
Smart Texture Magnification Filtering
Robert Jr Ohannessian

Abstract - The project consists of a simple scanline
rasterizer coupled with a texture unit implementing the
SmartFlt magnification algorithm. In typical Graphics
Processing Units, the best magnification texture filter
available is a simple bilinear filter. Unfortunately, bilinear
filtering leaves the texture blurry and diminishes the
perceived detail of the image. SmartFlt, on the other hand,
recognizes patterns in the texture and will adapt the
filtering algorithm to better highlight contrast and detail in
the original texture.

I. INTRODUCTION

Texture mapping is a technique used to add detail to 3D
models. It can be loosely described as "pasting an image
onto a triangle". Essentially, each vertex1 of a 3D mesh2

is assigned texture coordinates. Those coordinates are
interpolated for each fragment3 of the triangle. Finally,
the interpolated coordinates are used to index an image
(or texture), and the color value that was looked-up is
shaded and drawn in a frame buffer4.

Magnification occurs when several pixels get mapped to
the same texel5. That is, the texture does not have
enough precision to accurately describe the detail it was
meant to, for some set of pixels.

In this paper we make the simplifying assumption that
all textures are two dimensional arrays of four-
component color values. We will also assume that we
are always in magnification, since this is the area of
interest.

The interpolated texture coordinates are usually
fractional; when indexing an image, we need to round
the coordinate to some integer for computing the texel
address in the texture. If we just round to nearest, each
fragment will have the nearest texel corresponding to its
texture coordinate assigned to it. This leads to images
that are blocky: due to what is known as the "mach band
effect", the boundary between texel colors is
exaggerated.

1 Point in n-dimensional space with corresponding attributes, such
as color and texture coordinates

2 Set of triangles forming some 3D shape
3 Ccolor value, position, texture coordiante and other attributes

placed together
4 Memory that contains the final rendered image. It is usually

displayed on a monitor via a DAC
5 Texture Element

To reduce this effect, textures are usually filtered. One
such filtering scheme is bilinear filtering: For each
texture coordinate, we look-up the four nearest texels.
We then use the fractional parts of the texture
coordinate to interpolate the texel values.

Bilinear filtering gives significantly better results than
nearest filtering. However, when magnifying too much
(more than two or three pixels per texel), the resulting
image appears blurry, soft and lacking in detail, even
though no detail is actually lost.

The Smart Texture Filtering (SmartFlt) addresses those
concerns. SmartFlt manages to retain detail without
much aliasing or blurring. As we will see, SmartFlt is
almost as inexpensive as bilinear hardware wise, and is
just as fast. There is one caveat however: the texture
needs to be preprocessed first.

To demonstrate the feasibility of such a texture filter, we
have built a simple scanline rasterizer implementing this
algorithm. Real Graphics Processing Units (GPUs) are
highly parallel, and need to operate at high clock rates.
There is thus a need to have circuits be both small and
fast, so that they may be replicated any number of times.

II. BACKGROUND

As we have mentioned above, magnification occurs
when several pixels on screen get mapped to the same
texel. To be precise, magnification occurs when

x , y1
2

, where

 x , y=log2 x , y
 x , y=max x x , y ,y x , y

x x , y= ∂u
∂ x

2

 ∂ v
∂ x

2

 y x , y= ∂u
∂ y

2

 ∂ v
∂ y

2

where
∂u
∂ x

is the derivative of the u component of the

texture coordinate with respect for the screen's x
coordinate, and similarly for the other partial
derivatives.

Essentially, when moving from one pixel to the next in
any one dimension, we end up referring to the same
texel. As mentioned earlier, without filtering, the
resulting image looks blocky and aliased.

1

Bilinear filtering is used to
smooth out the color
discontinuities, preventing
the mach band effect. For
each texture coordinate, we
look-up the four nearest
texels and interpolate their
colors in two dimensions
using the fractional parts of
the texture coordinate as
filter weights.

The texel color ct is computed by the following
equations:

ct=lerp lerp A , B ,u , lerp D ,C ,u , v

lerp A , B ,u=B−A×uA
A, B, C, D are the four texels we interpolate on, and u
and v are the fractional components of the 2D texture
coordinate. This is performed for each color component
of the four texels.

Typical GPUs perform these computations using
floating-point numbers. In the interest of rapid
development, we have opted for a fixed-point scheme
instead. The various quantities use different
arrangements of integer and fractional parts, as needed.
Throughout this paper, we will refer to fixed-point
formats in the following format: [u | s]i.f, where u means
unsigned, s means signed, i is the number of bits in the
integer part and f is the number of bits in the fractional
part. For example u0.32 is an unsigned number with 0
bits of integer and 32 bits of fraction, yielding numbers
in the range [0..1[.

IV. DESIGN

SmartFlt Algorithm

SmartFlt is an algorithm developed by Maxim Stepin to
retain hard edges in textures when filtering. As
previously mentioned, the texture needs to be
preprocessed before having SmartFlt applied to it. The
preprocessing step consists in determining, for each
texel, which of the 14 patterns it corresponds to based
on the neighboring texels. That is, we look at each 2x2
block of texel and try to match it some of the patterns.

For example, if three of the four texels in a 2x2 block
are yellow, and the fourth one is blue, then we select
pattern 3. Note that the yellow shades in our example
need not be identical. Indeed, the idea is that we still
want to apply bilinear filtering on those texels that are of
similar color so that we get rid of the banding. The
patterns, on the other hand, are used to determine where
the hard edges are.

Taking the case of pattern 3 again, the texture filter
algorithm will determine which region the texture
coordinate falls in based off its fractional parts. It will
then apply one of the 3 filters, depending on the region,
as shown in Figure 3.

The other patterns are handled similarly. Appendix A
contains the complete list of equations we used.

The full SmartFlt algorithm actually uses over 200
patterns for a much better final image. In the interest of
time, we have opted to implement just the basic
SmartFlt algorithm.

Texture Storage Format

Since we need to store the pattern number for each texel,
we could use a separate image, much like for mipmaps.
However, for simplicity, we have opted to store the
pattern number in the alpha channel of the texture. Thus,
the alpha channel now contains just the SmartFlt pattern
number instead of transparency information.

To preserve compatibility with the full SmartFlt
algorithm, and in case we decide to implement the full
algorithm at some later time, the pattern number only
occupies the top four bits of the 8-bit alpha channel. The
bottom four bits are reserved for future use, and are
ignored in the current implementation.

Design Constraints

We have opted for a design clock rate of 100 MHz on a
Xilinx Virtex II Pro, and have pipelined the architecture
accordingly. Re-pipelining can always be done if a
different target clock rate or implementation on an
alternative FPGA or technology is desired.

2

Figure 1. Bilinear footprint

Figure 2. SmartFlt Texel Patterns

Figure 3. Regions and Equations for Pattern 3

The hardware was also designed to process a single
pixel every clock cycle. Higher throughput can be
achieved by placing several of the pipelines in parallel.

System Design

The system is conceptually comprised of three parts: A
user application, a driver and the graphics hardware. In
our case, we merged the driver and the user application
into a single program. This test program will basically
generate some geometry (several cubes randomly
rotated), then transform every vertex in the scene.
Perspective projection is then performed, followed by a
computation of the screen-space edge equations of the
triangles (also known as Setup). Finally, the driver
generates a list of scanlines with their attributes via scan
conversion and interpolation. The driver code is based
off Allegro's software rasterizer.

The scanlist list is then read by the hardware's front-end,
which will control the fragment generation. The
hardware renders the scene described by the scanline list
and finally outputs an image.

The hardware was actually implemented twice. First, a C
version was built to test the algorithms involved. The C
version isn't bit accurate or even cycle accurate. It is
only an equivalent software implementation of the
hardware. It will read the same data as the driver, and
output the an image similar to that of the hardware. The
second implementation is in VHDL.

This dual system provides testing redundancy: We have
a second implementation to validate against, increasing
the robustness of the final hardware implementation.

Command Stream

The command set supported by the rasterizer is as
follows:

Cmd Opcode Description Format Type

stxy FE_SET_XY x,y coords of the start of span xxyy u16

stxe FE_SET_X_END span x end coordinate (excluded) xx.. u16

stiz ATTR_SET_Z 1/z of the start of the span zzzz u0.32

stdz ATTR_SET_DZ d 1/z for the span dddd s0.31

stuz ATTR_SET_U u/z at the start of the span uuuu u0.32

stvz ATTR_SET_V v/z at the start of the span vvvv u0.32

stdu ATTR_SET_DU d u/z for the span dddd s0.31

stdv ATTR_SET_DV d v/z for the span dddd s0.31

stc0 ATTR_SET_C0 Red/Green color rrgg u0.16

stc1 ATTR_SET_C1 Blue color bb.. u0.16

std0 ATTR_SET_DC0 Red/Green deltas per fragment rrgg s0.15

std1 ATTR_SET_DC1 Blue delta per fragment bb.. s0.15

draw DRAW Draw span with current values
txen TEX_ENABLE Enables texturing ...e bool

txsz TEX_SET_SIZE Set texture size, as 2w, 2h wwhh u16

txad TEX_SET_ADDR Set texture FB address (ignored)
txfl TEX_SET_FILTER Sets the texture filtering mode ...m enum

fbsz FB_SET_SIZE Set frame buffer size wwhh u16

fbdp FB_DUMP Dumps content of frame buffer

Table 1. Rasterizer Command Set

The Cmd column describes the command name in the
scanline file, whereas the opcode field is the actual
name used in the rasterizer.

The scanline attributes should be correctly set up prior
to issuing a DRAW command.

Rasterizer Design

The Host module we implemented is a stub
for an actual host. Instead of managing he
AGP or PCI port, it reads a command
stream from a file and feeds it to the
rasterizer. The rasterizer core then
generates shaded pixels, which are passed
to the Back-End. The Back-End would
normally perform a depth test and optional
blending before passing the result to a
memory controller. Instead, our Back-End
just writes the incoming fragments into a
pixel buffer, which will later be written to
an image file, in Targa (TGA) format.

3

Figure 5.
Rasterizer
overview

Figure 4. System Overview

The rasterizer is essentially a top-
down pipeline. The Host connects
to the Front-End of the pipeline to
issue commands. The Front-End
will then pass commands and
attributes to the Attribute
Interpolation block, which feeds
into Perspective Correction.
Perspective-corrected texture
coordinates are then converted into
a texture address by the Texture
Addressing Unit, and passed to the
memory controller. The other
attributes are queued in a latency
FIFO. Once the memory request is
fulfilled, the Texture Filtering unit
reads the attributes from the latency
FIFO and the texels from memory
and filter them to generate a
fragment. This fragment then gets
lit in the Shader unit, before being
passed down to the Back-End.

The Front-End of the rasterizer decodes the command
from the Host. The Front-End implements a simple state
machine. It starts initially in the IDLE mode. In IDLE
mode, it reads commands from the Host. If the
command is a state change, then the command is passed
down the pipeline unchanged. The relevant unit will
pick it up and perform the state change. On the other
hand, if the command is a draw command, then the
Front-End switches to the DRAWING state. In that state,
the rasterizer will appear busy to the Host and
commands will no longer be read. The Front-End will
then generate draw commands for the rest of the
pipeline, one for each pixel in the scanline that needs to
be rendered, looping from the scanline's start position to
the end position. Once the end of the scanline has been
reached, the Front-End reverts to its IDLE state and
resumes command decode.

As draw commands are
passed down from the
Front-End, the
Attribute Interpolation
block will interpolate
the scanline attributes
for the next fragment.
This is done via simple
addition of a delta
value, which was
precomputed by the
driver. We interpolate
a specular color (all
four channels), inverse
depth, and perspective
divided texture
coordinates. That is,
we interpolate 1/z, u/z
and v/z instead of z, u and v, simply because 1/z, u/z and
v/z are linear functions in screen-space, whereas z, u and
v are hyperbolic, which makes interpolation significantly
more complicated. This is the first step of perspective
correct texture mapping.

Because we use accumulation to interpolate attributes,
the original attributes are overwritten by the interpolated
values. This means that if a second scanline has the
same attributes as the first one, the driver will still need
to resend those attributes.

The interpolated scanline attributes are then passed
down to the Perspective Correction block. This module
will perform the second step of perspective correction -
multiplication by z of u/z and v/z to obtain u and v for
each fragment. However, since we only know the
fragment's 1/z value, we first need to reciprocate that to
obtain z, then multiply the result by u/z and v/z.
Normally, we would also do the same for color.
However, this would require additional hardware and
extra complexity for very little quality gain, since
Gouraud shading does not usually appear distorted.

4

Figure 6. Rasterizer
Block Diagram

Figure 7. Front-End Block Diagram

Figure 8. Attribute Interpolation Block
Diagram

Figure 9. Perspective Correction Block Diagram

The reciprocal unit is a
hybrid design, using a look-
up table for the initial
approximation, followed by
two Newton-Raphson
iterations to produce an
approximation of the
inverse of the input. The
maximum error is 1.2 ulps
when the input (a u0.32
number) is in the range
[2^-24..1[. The output
is a u24.8 number, clamped
to the largest value on
overflow.

Figure 12. Newton Raphson
Iteration

Beyond this, no further
optimizations were made to
the reciprocal unit, as it is
beyond the scope of this
project.

Texture coordinates are
converted to u8.24 format
and clamped on overflow.
The results are sent down to
the Texture unit.

The Texture unit is
comprised of three sub-
modules: Texture Address,
Latency FIFO and Texture
Filter. Note that we only
support a single texture
throughout the Texture unit.

The Texture Address unit first
clamps the texture coordinate
components to the range [0..1]. It
then multiplies the result by the
texture size to obtain physical
coordinates. Finally, the texture
coordinate components are split
into 16-bit integer and 8-bit
fractional parts. The integer parts
are used to generate a texture
address whereas the fractional
parts are queued in the Latency
FIFO, to be used in filtering. The
state bundle and other state are

also queued in the FIFO, pending completion of the
memory request.

Because texture requests need to go through memory,
where latency is both very high and unpredictable, we
use a latency absorbing FIFO. The FIFO should be
implemented as an embedded dual-ported block RAM,
to hold the intermediary values until the texture request
is complete.

The Texture Filter unit waits for a memory request to be
fulfilled, then picks up the corresponding attributes from
the FIFO. Filtering is then performed on the received
texels. The MUX select lines are determined from the
pattern encoded in the alpha channel of texel A,
combined with the fractional texture coordinates. The
proper filtering equation is thus selected. Refer to
Appendix A for the complete list. The filtering hardware
is very similar to that of plain bilinear filtering. We have
simply added some logic and MUXes for the filter
weights. We also added swizzling MUXes between the
two interpolation steps to allow the second step to
source any of the results of the first step. These simple
additions allow us to implement all of the filtering
equations needed for the basic SmartFlt algorithm.

The only texture format we support is packed RGBA
with 8-bit components. As we can see from Figure 14,
the additional hardware needed for SmartFlt is quite
small. Moreover, pipelining allows us to make it just as
efficient.

5

Figure 10. Reciprocal Unit Block
Diagram

Figure 14. Texture Filtering Block Diagram

Figure 13. Texture
Addressing Block Diagram

yn1= yn2.0−x yn

Figure 11. Texture Unit Block
Diagram

The filtered texel,
along with the
remaining fragment
attributes, is then
passed over to the
Shader unit. The
Shader unit is very
simple. It was
designed to do one
thing: specular
lighting. As such, it

will simply add the fragment color to the filtered texel,
and clamp on overflow. The final result is then output to
the Back-End for final rasterization.

V. CHALLENGES

The first main challenge we faced was converting the
SmartFlt software algorithm into hardware. SmartFlt has
14 different code paths for the 14 different patterns, all
written in x86 assembly without much documentation.
We essentially had to rewrite the filtering equations for
each region of each pattern, using barycentric
coordinates or point-to-line projection for the filter
weights. Then we had to map all the equations into
hardware. We noticed that they all resembled each other
to a certain extent: they were all of the bilinear filtering
form, with different weights and swizzled inputs for the
final interpolation. From there, it was a simple matter to
build the corresponding hardware.

The second main challenge was the fact that we needed
a fixed-point reciprocal unit. We first looked up various
algorithms to achieve this. A selected algorithm
(Newton-Raphson with LUT hybrid) was then
implemented in C, with checks for the maximum error,
and tweaked to minimize that error. Then, we converted
the code to VHDL and pipelined it as needed to achieve
the 100 MHz target speed.

Finally, debugging proved to be more difficult than
originally anticipated. There are thousands of signals to
look at, and simulations must run for hundreds of
thousands of cycles to produce meaningful results. This
means that looking at signal graphs is a mostly futile
exercise unless the bug was already located in both time
and space. Locating bugs was done using a set of
regression tests, which are incrementally more complex.
The generated images are then compared to those
created by the C version of the code. The tests stress
particular parts of the pipeline, so it is easier to
determine which unit is at fault. Moreover, the tests are
quite short, needing only several hundreds of cycles to
run. With that in mind, we can then look at the signals
generated by said unit during the test to determine where
the bug is.

VI. RESULTS

Synthesis

We synthesized the design onto the Xilinx Virtex II Pro
FPGA, model 2VPX70ff1704. This particular FPGA
was selected for its built-in multiplier blocks. We use
many large multipliers in our design, so we would like
to use built-in modules to both save on area and increase
the speed of the design.

The blocks that were synthesized were:

– Front-End
– Attribute Interpolation
– Perspective Correction (with Reciprocal)
– Texture Addressing
– Texture Filtering
– Shader

Host and Back-End are stubs for actual units that would
perform their tasks. They process files for I/O and are
only really useful for simulation purposes. The Texture
Latency FIFO should be implemented as embedded
dual-ported block RAM instead, so it has also not been
synthesized.

We obtained the following synthesis results:
Area 2880 CLB slices + 33 Block Multipliers

Speed 107.7 MHz
Throughput Up to 1 pixel/clock

We have met our speed target, and the area usage is not
very high.

SmartFlt vs Bilinear

We have also synthesized the Texture Filtering block by
itself in two different configurations: SmartFlt with
Bilinear and Bilinear alone. We obtained the following
results:

SmartFlt Bilinear SmartFlt Increase
CLB Slices 554 443 +25%

DFFs 1107 886 +25%

Multipliers 12 12
Latency 5 clocks 4 clocks +25%

Speed 122.3 MHz 129.1 MHz -5%

Bandwidth 4 samples/clock 4 samples/clock
Throughput 1 pixel/clock 1 pixel/clock

As we can see, the additional area for SmartFlt is quite
small: only 111 CLB slices and 221 DFFs, which
includes the two 8-bit adders. Although this looks like a
25% increase in area, it is actually much less, since
multipliers consume a lot of die space and their number
remains constant between the two circuits.

6

Figure 15. Shader Block Diagram

Latency has increased by one cycle, but this is less
important than throughput for graphics applications. In
case latency did matter, however, the first stage of the
pipeline could be mostly moved in parallel to Texture
Addressing, with the remains staying at the beginning of
Texture Filtering, where there is some slack space left.

In terms of memory bandwidth, SmartFlt has the same
usage pattern and footprint as Bilinear. This means that
the image quality enhancements are essentially “free”.
Bandwidth is still a tight commodity in GPUs, even in
the realm of many tens of GB/sec.

Generated Images

The above image was extracted from three 800x600
frame generated by the hardware, each with a different
texture filter. On the left, Nearest Filtering was used. As
we can see, the image is blocky. The individual texels
are perfectly visible. In the center is Bilinear Filtering.
The edges are blurred out, making it seem as if detail
was missing. On the right is SmartFlt. The edges are
kept sharp and distinct from the background, which is
just bilinear filtered.

Generating these images took 2.5 ms in simulation, each
(around 5 hours each using ModelSim XE Student
Edition). This means that our scene with 96 large
triangles renders at 400 frames per second.

VII. ISSUES REMAINING

SmartFlt seems to be both cheap and fast, so why not
use it? There are still several issues that need to be
resolved before an actual commercial application can be
made.

Firstly, the texture preprocessing algorithm is not fully
automated yet. It requires that a segregation image be
provided along with the original texture.

Interaction with minimification has not been properly
defined. We should make sure there are no image
discontinuities when moving between the magnification
and minimification cases.

Interaction with anisotropic sample selection has not
been defined either. We should make sure there are no
discontinuities in that regard.

VIII. CONCLUSION

SmartFlt is both cheap and fast. The image quality
enhancement is quite noticeable. It has a good potential
of being a worthy additional to bilinear filtering.

Moreover, the full SmartFlt algorithm has even more
patterns, for an even higher filtering quality, making it
potentially more interesting.

However, before SmartFlt can be implemented in
commercial GPUs, some issues need to be resolved,
such as interaction with minimifaction and anisotropic
sample selection.

IX. REFERENCES

1. Maxim Stepin, "HiEnd3D, Smart Texture Filtering"
http://www.hiend3d.com/smartflt.html

2. Shawn Hargreaves and others, "Allegro Gaming
Programming Library"
http://alleg.sf.net/

3. Mark Segal, Kurt Akeley, "The OpenGL Graphics
System: A Specification (Version 1.5)"
http://www.opengl.org/documentation/specs/version
1.5/glspec15.pdf

7

X. APPENDIX A - PATTERNS

List of filtering equations for each pattern:

P Region Filtering Equation

0 lrp lrp A , B ,u , lrp D ,C ,u , v
1 v0.5 lrp A , B ,u

v≥0.5 lrp D ,C ,u
2 u0.5 lrp A , D , v

v≥0.5 lrp B ,C , v
3 uv≥1.5 C

1≤uv1.5 lrp D , B , u−v1
2

0≤uv1 lrp A , B ,uD−A×v
4 v−u0.5 D

vu lrp A ,C , uv
2

v≤u lrp A , B ,uC−B×v
5 0≤uv0.5 A

0.5≤uv1 lrp B , D , v−u−1
2

1≤uv lrp D ,C ,uB−C ×1−v
6 v−u0.5 B

uv lrp A ,C , uv
2

u≤v lrp D ,C ,uA−D×1−v
7 v≥0.5 lrp D ,C ,u

u0.5, v0.5 A

u≥0.5, v0.5 B
8 v0.5 lrp A , B ,u

u0.5, v≥0.5 D

u≥0.5, v≥0.5 C
9 u≥0.5 lrp B ,C , v

v0.5, u0.5 A

v≥0.5, u0.5 D
10 u0.5 lrp A , D , v

v0.5, u≥0.5 B

v≥0.5, u≥0.5 C
11 v−u−0.5 B

v−u≥0.5 D

−1
2
≤v−u1

2
lrp A ,C , uv

2

P Region Filtering Equation

12 1.5≤uv C

0≤uv0.5 A

0.5≤uv1.5 lrp B , D , v−u1
2

13 u0.5, v0.5 A

u0.5, v≥0.5 D

u≥0.5, v0.5 B

u≥0.5, v≥0.5 C

Where lrp A , B ,u=B−A×uA , A, B, C and D are
the four texels to filter, and u and v are the fractional
parts of the texture coordinate.

8

XI. APPENDIX B – SOURCE CODE

9

XII. APPENDIX C – SYNTHESIS SCRIPTS

10

