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ABSTRACT
“Nohalo” is the simplest member of a novel family of im-
age resamplers which straighten diagonal interfaces without
adding noticeable nonlinear artifacts. Nohalo is interpo-
latory, co-monotone, co-convex, antialiasing, local average
preserving, continuous, and exact on linears. Its nonlinear
component, based on minmod, is simple. Like many edge-
enhancing methods, Nohalo has two main stages: First, non-
linear interpolation is used to create a double-density version
of the original image. This double-density image is then re-
sampled with bilinear interpolation. This makes Nohalo well
suited for GPU computing because the final bilinear stage
can be performed in hardware.

Compared to twenty-three alternatives in tests involving
the re-enlargement of images downsampled with nearest neigh-
bour, Nohalo gets the best PSNRs.

Three implementations of Nohalo are presented: a CPU
version in C for the graphics library GEGL, an SMP version
in C++ for the graphics library VIPS, and a GPU version
in HLSL for DirectX. The GPU implementation is branch-
free thanks to arithmetic branching. The C/C++ versions
are made essentially branch-free (signs are computed) by
reflecting, if needed, the 12-point stencil with pointer arith-
metic. Nohalo is at most four times slower than bilinear.
On GPUs, it achieves about half the frame rate of hard-
ware bilinear when upsampling DVD video to HDTV. On
SMPs, Nohalo performs as befits an embarrassingly parallel
method.
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1. INTRODUCTION
Image resampling [10] and upsizing (super-resolution) [17]
have been extensively studied. Yet, the definitive all-purpose
method for image warping, let alone image enlargement,
does not appear to have been found.

A variety of approaches have been proposed to better
interpolate edges. Often, but not always [19, 22], edge-
enhancing methods have two main stages: First, a nonlinear
interpolation scheme is used to create a double-density (or
dual) version of the original image (this stage is often split
into additional steps [14] or performed multiple times [13]).
Then, this double (or higher) density image is further re-
sampled with a simpler “finishing” scheme [6, 7, 8, 9].

We introduce a new resampling method which uses such a
two-stage approach. The Nohalo method, so named because
it does not add “halo” artifacts, is local, interpolatory, co-
monotone, co-convex, local average preserving, continuous,
and exact on linears (with a suitable abyss policy). Nohalo



is weakly antialiasing, being the simplest member of a family
of resamplers which double the input image more than once,
smooth the input image prior to the initial subdivision, use
a more sophisticated terminal resampling method, and/or
have more sophisticated handling of high frequency modes.
Nohalo’s simplicity, however, allows it to run almost as fast
as standard bicubic resamplers.

Nohalo was integrated into two image processing and com-
positing systems which structure complex tasks as Directed
Acyclic Graphs (DAGs): GEGL (the GEneric Graphics Li-
brary, the future engine of GIMP, the GNU Image Manipu-
lation Program), primarily designed for interactive use; and
VIPS (Virtual Image Processing System, with GUI Nip2),
which is tuned for high performance batch processing. No-
halo was also implemented as a stand-alone HLSL/DirectX
real-time video resizing application. In this article, these im-
plementations are described and benchmarked. In addition,
the accuracy of Nohalo as an image reconstructor is quan-
titatively compared to one nonlinear and twenty-two linear
alternatives.

2. DESCRIPTION OF THE METHOD
Nohalo is very simple.

2.1 “Corner” Image Size Convention
Although Nohalo can be used with other conventions—for
example, it can be made to function like an exact area
method—it best fits the “corner” image size and geometry
convention. In the corner image size convention, an n × m
pixel image has surface n − 1×m − 1 (assuming unit inter-
pixel distance) and, when resizing images, the (centers of
the) resampled image’s corner pixels are best understood as
being aligned with those of the input image.

2.2 Resampling by Interpolation
Assuming that the input pixels are centered at integer coor-
dinates, the interpolation problem can be stated as follows:
Given an m × n image with pixel values pj,i, construct a
surface f(x, y) such that

f(j, i) = pj,i (i ∈ {0, 1, . . . , n − 1} , j ∈ {0, 1, . . . , m − 1}).
(1)

Given a point transformation φ : R
2 → R

2, the pixel value
at a point (X, Y ) = φ(x, y) of the transformed image is given
by f(x, y). Thus, the resampled image is completely defined
by the reconstructed intensity surface f(x, y). For example,
when resizing the entire input image to width M − 1 and
height N − 1, the pixel value corresponding to the J + 1st
pixel of the I + 1st row (indexing starts at 0) of the output
image is

PJ,I = f

„

m − 1

M − 1
J,

n − 1

N − 1
I

«

.

2.3 Three-Stage Description of Nohalo
The construction of the interpolating surface f(x, y) is best
described as a three stage process:

1. Nonlinear gradient computation;

2. Construction of a double-density version of the original
image;

3. Further interpolation of the double-density image with
bilinear.

2.4 Nonlinear Gradient Computation
To every input pixel location (j, i), we associate a plane
which interpolates the corresponding pixel value:

fj,i(x, y) = pj,i + sx
j,i (x − j) + sy

j,i (y − i) .

Because pj,i is a given input pixel value, each such plane is
fully determined by its gradient (sx

j,i, s
y
j,i).

Ignoring boundary issues for the time being, consider the
left and right differences

sx−
j,i = pj,i − pj−1,i and sx+

j,i = pj+1,i − pj,i. (2)

In terms of these differences, the horizontal slope sx
j,i is de-

fined as follows: If sx−
j,i and sx+

j,i have the same sign, sx
j,i is the

smaller of the two (in absolute value); otherwise, sx
j,i = 0.

This choice is motivated as follows: If the left and right
slopes have different signs, the pixel value under considera-
tion is a local minimum or maximum along this row of pixels
and it makes sense to set the corresponding slope to zero.
On the other hand, if the two slopes have the same sign,
taking the smallest one recovers the slopes of affine func-
tions without error while minimizing oscillations. Using an
analogous defininion for the top and bottom differences,

sy−

j,i = pj,i − pj,i−1 and sy+

j,i = pj,i1 − pj,i, (3)

we thus set

sx
j,i =minmod(sx−

j,i , sx+

j,i ) and sy
j,i =minmod(sy−

j,i , sy+

j,i ). (4)

2.5 Programming the Minmod Function
Because minmod does not appear in Hacker’s Delight [21]
and like compendia, we provide formulas for it.

minmod(a, b)=
1

2
{sign(a) + sign(b)}min(a sign(a), b sign(b))

where sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0 (the
value of sign(0) is irrelevant because the minimum vanishes
when it occurs; in our code, we compute signs and minima
with conditional moves).

The HLSL compiler implements the sign function with two
conditional moves (so as to ensure that sign(0) = 0). For
this reason, we use absolute values and the Heaviside step
function H(x) ((x≥0) in C, step(0,x) in HLSL and OpenGL)
in our GPU implementation (Listing 1)1:

minmod(a, b) = {H(a) + H(b) − 1}min (|a| , |b|) .

2.6 Computation of the Double-Density
Version of the Input Image

The interpolation condition (1) sets the value of f(j, i) for
i in [0, n − 1] and j in [0, m − 1]. The pixel values which
are missing in order to double the pixel density of the input

1Too late for this article’s benchmarks, the authors discov-
ered a formulation of minmod which speeds up Nohalo by up
to 20%: ( a*b>=0 ? ( (a*b-a*a)>=0. ? a : b ) : 0. ).
For the GPU, use |b| − |a| instead of ab − a2.



Listing 1: GPU pixel shader for gradient calculation.
uniform sampler sImage ;
uniform float2 vStepX , vStepY ;
void main( float2 vTex : TEXCOORD0 ,

out float4 sx : COLOR0 ,
out float4 sy : COLOR1 ) {

float4 mid = tex2D (sImage , vTex);
float4 lef = mid - tex2D (sImage , vTex -vStepX );
float4 rit = tex2D (sImage , vTex+vStepX ) - mid;
float4 top = mid - tex2D (sImage , vTex -vStepY );
float4 bot = tex2D (sImage , vTex+vStepY ) - mid;
float4 hsize = min ( abs(lef ), abs(rit) );
float4 vsize = min ( abs(top ), abs(bot) );
float4 hswitch = step(0, lef ) + step(0, rit );
float4 vswitch = step(0, top ) + step(0, bot );
sx = hsize * hswitch - hsize + 128/255.;
sy = vsize * vswitch - vsize + 128/255.; }
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Such points are halfway between two consecutive input pixel
locations in the horizontal or vertical direction, or they are
located at the average of four nearby input pixel locations.
This suggests averaging the values given by the approximat-
ing planes fj,i(x, y):

f(j +
1

2
, i) =

1
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fj,i(j +
1

2
, i) + fj+1,i(j +

1

2
, i)

ff

(5)

=
1

2
{pj,i + pj+1,i} +

1

4

˘
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j+1,i

¯

;
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1

2
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1
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1
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¯
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(7)

=
1

4
{pj,i + pj+1,i + pj,i+1 + pj+1,i+1}
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1
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sx
j,i − sx
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¯
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f(j +
1

2
, i) + f(j, i +

1

2
)

ff

+
1

4
{pj+1,i+1 − pj,i}

+
1

8

˘

sx
j,i+1 − sx

j+1,i+1 + sy
j+1,i − sy

j+1,i+1

¯

.

Nohalo’s double-density version of the image is now com-
pletely specified.

2.7 Arithmetic Branching on the GPU
In our GPU implementation, the double-density image is
explicitly computed, and stored in a texture.

Listing 2: GPU pixel shader for 2X upsizing.
uniform sampler sImage , sGradX , sGradY ;
uniform float2 vStepX , vStepY , vSize ;
float4 main(float2 vTex : TEXCOORD0 ) : COLOR {
float4 p_c = tex2D(sImage ,vTex);
float4 dx_c = tex2D (sGradX ,vTex );
float4 dy_c = tex2D (sGradY ,vTex );
float4 p_r = tex2D(sImage ,vTex+vStepX );
... /* Same with dx_r and dy_r. */
float4 p_b = tex2D(sImage , vTex+vStepY );
... /* Same with dx_b and dy_b. */
float4 p_br = tex2D (sImage ,vTex+vStepX +vStepY );
... /* Same with dx_br and dy_br. */
float2 coord = frac(vTex * vSize) - .25;
float4 f_c = p_c + dx_c*coord.x + dy_c*coord.y;
float4 f_r = p_r + dx_r*( coord.x -1)

+ dy_r*coord .y;
float4 f_b = p_b + dx_b*coord.x

+ dy_b*( coord.y -1);
float4 f_br = p_br + dx_br *( coord.x -1)

+ dy_br *(coord .y-1);
float4 top = lerp(f_c , f_r , coord.x);
float4 bot = lerp(f_b , f_br , coord .x);
/* The compiler adds one extra instruction if

lerp is used below in the obvious way. */
return top *(1- coord .y) + bot *coord .y; }

The value of a double-density image pixel depends on
whether it is an input pixel, horizontal halfway pixel, verti-
cal halfway pixel, or “diagonal” average of four input pixel
locations. In order to avoid conditional execution, we use
arithmetic branching.

Let x̂ = x − j and ŷ = y − i. Because x̂ and ŷ are equal
to 0 or 1/2 at the relevant pixel locations,

f̃(x, y) = (1 − ŷ) {(1 − x̂)fj,i(x, y) + x̂fj+1,i(x, y)}

+ ŷ {(1 − x̂)fj,i+1(x, y) + x̂fj+1,i+1(x, y)} (8)

satisfies

f̃(j, i) = f(j, i), f̃(j + 1/2, i) = f(j + 1/2, i),

f̃(j, i + 1/2) = f(j, i + 1/2), and

f̃(j + 1/2, i + 1/2) = f(j + 1/2, i + 1/2),

provided Eq. (1) and Eq. (5)–(7) are satisfied. One single
branch-free formula thus covers all four cases.

f̃ has two important properties besides emulating f . The
first is that f̃ is continuous, which implies that small errors
in the computation of x̂ and ŷ lead to small errors in the
double-density pixel values. The second is that f̃ is invari-
ant under uniform shifts of the slope values. This matters
because the gradients are stored in 8-bit textures in order to
save memory, which is harmless because minmod maps 8-bit
unsigned integers to integers in the range [−127, 127]. In or-
der to store the slopes in standard unsigned 8-bit textures,
the slopes are shifted by 128 (hence the “128/255.” terms
in Listing 1). Without shift invariance, one would have to
undo the gradient shifts before use; with it, no “128/255.”
appears in Listing 2.

2.8 Final Interpolation with Bilinear
If the task at hand is resizing the m×n input image to 2m−
1×2n−1, we are done. However, the point transformation φ
applied to the input image is generally not a simple density
doubling. Put another way: Although we now“know”about



four times as many f -values, we still have not fully specified
the surface f(x, y).

The reconstructed intensity surface f(x, y) is simply ob-
tained from the double-density image by bilinear interpola-
tion. Save for boundary issues, Nohalo is now completely
specified.

2.9 Nohalo Has a 12-Point Stencil
The value of the reconstructed intensity surface at any point
depends on the values of (at most) 12 nearby input values.
The reason for this is that a resampling point is in the con-
vex hull of four contiguous double-density pixels: one in-
put pixel, one horizontal halfway pixel, one vertical halfway
pixel, and one “diagonal” pixel. Thus, there are four cases
to consider, depending on whether the input pixel which is
directly involved in the final bilinear interpolation stage is
top-left, top-right, bottom-left or bottom-right. Tracking
down the pixels needed to compute slopes in each of these
cases leads to the following: The stencil of Nohalo is the 4×4
stencil of standard bicubic methods, minus the four corners.
In other words, the stencil of Nohalo is a two pixel thick “fat
+.” (Such a stencil is also used in the ICBI method [12].)

2.10 Arithmetic Branching with Pointers
The weights involved in the computation of a pixel value
depend on the position of the closest input pixel relative to
the sampling point. In our demand-driven (“pull”) imple-
mentations, the four cases (top-left, top-right, bottom-left
and bottom-right) are treated as one by implicitly reflecting
the 12-point stencil using index arithmetic.

2.11 Nearest Neighbour Abyss Policy
If the resampling location is within one inter-pixel distance
of the boundary, the differences used to compute slopes in-
volve undefined pixel values. Consider, for example, the
plane

f0,0(x, y) = p0,0 + sx
0,0x + sy

0,0y,

which enters the computation of resampled pixel values asso-
ciated with locations (x, y) in [0, 1)× [0, 1). Computing sx

0,0

and sy
0,0 with Eq. (2)–(3) involves two “out of picture” pixel

values, p
−1,0 and p0,−1. More generally, the computation

of resampled values at locations which are within one pixel
width of the boundary may involve pj,−1 or pj,m for j ∈
{0, 1, . . . , n − 1}, or p

−1,i or pn,i for i ∈ {0, 1, . . . , m − 1}.
The nearest neighbour abyss policy sets the value of an “out
of picture” pixel to the value of the closest “in picture” (and
consequently boundary) pixel.

In VIPS, this is accomplished by virtually extending the
input image by two rows and two columns all around. That
is, the top row of the input image is triplicated; so is the
bottom row and the leftmost and rightmost columns.

In DirectX, this is implemented by setting the texture
pixel lookup behavior to “clamp.” Clamping the coordinates
of requested pixel coordinates to the valid range automat-
ically makes a request for the pixel value associated with
an “out of picture” location return the value of the closest
boundary pixel.

2.12 Linear Extrapolation Abyss Policy
With the nearest neighbour abyss policy, constant input
data is “seen” as constant by the resampler. Therefore, No-
halo is globally exact on constants. With the nearest neigh-

bour abyss policy, linearly varying data is unfortunately not
“seen” as such by the resampler near the boundary because
replication/clamping does not correctly extrapolate linear
functions. As a result, Nohalo is not exact on linears near
the boundary.

Linear extrapolation can be used to preserve exactness on
linears all the way up to the boundary (and beyond), Al-
though the pixel values of the extended input image may
overflow or underflow with linear extrapolation, monotonic-
ity is still maintained, which implies that f(x, y) stays within
its natural bounds within the extent of the input image.
(Note: Because the “corner” pixel values of the enlarged im-
age are not used by Nohalo in the “corner” image size con-
vention, the ambiguity which arises as to whether rows or
columns should be used to compute the values of extrapo-
lated “corner” pixels is of no consequence.)

This alternate abyss policy has not been implemented.

3. PROPERTIES OF NOHALO
Nohalo is local, interpolatory, co-monotone, co-convex, local
average preserving, continuous and exact on linears (except
possibly at the boundary). These properties, with the ex-
ception of continuity which is not applicable, hold for the
density doubling scheme; they also hold for bilinear resam-
pling. This is why they hold for their combination.

3.1 Built-In Antialiasing
If an image is constant along diagonals, the reconstructed
intensity surface f(x, y) should ideally have the same prop-
erty. Bilinear interpolation does not preserve diagonality;
consequently, neither does Nohalo. The best one can hope
for is for the double-density version of the image to be con-
stant on diagonals if the input image is. To some extent,
this is the case.

Suppose that the input image is given by

pj,i =

8

<

:

0 if j < i,
1/2 if j = i,
1 if j > i.

Then, the resulting double-density image is constant on di-
agonals as well, taking the values 0, 1/4, 1/2, 3/4 and 1 as
the main diagonal is crossed. The double-density image is
also constant on diagonals if

pj,i =

8

<

:

0 if |j − i| > 1,
1/2 if |j − i| = 1,
1 if j = i.

That is: Nohalo preserves “soft” diagonal interfaces and
lines.

4. WEAKNESSES OF NOHALO
In some cases, Nohalo boils down to plain vanilla bilinear, so
that the computed slopes are wasted and the visual quality
is low.

If every pixel is either no less or no more than both of
its immediate neighbours in the horizontal direction, and
if, likewise, it is a local minimum or maximum when com-
pared to its immediate neighbours in the vertical direction,
then the slopes specified by Eq. (4) are all equal to zero.
Therefore, the values computed by Eq. (5)–(7) are identical
to those obtained with bilinear interpolation, and Nohalo is
reduced to bilinear interpolation. This is the case when the



Figure 1: 103x89 crops of enlargements of a low-
noise 64x64 pixel image to 127x127: monotone bicu-
bic splines (top), Nohalo (middle) and ICBI.

input image is bichromatic, for example, for black on white
text images. To some extent, the above conditions also ap-
ply to CG images with flat colour areas without boundary
blending. In general, Nohalo is more suited for natural im-
ages than man-made ones.

5. SAMPLE ENLARGEMENTS
Nohalo samples were computed with Nip2, the VIPS GUI.

5.1 200%
An archival high resolution scan of Ansel Adams’ photopor-
trait of Tōyō Miyatake, made available by the Library of
Congress, was downsampled with box filtering and cropped,
yielding a low noise 64x64 pixel image which was then re-
enlarged to 127x127 with Nohalo and two other methods:
monotone cubic splines (the authors’ Scilab/SIVP [3, 4] im-
plementation of the method of Fritsch and Carlson [11]);
and ICBI [12] (ICBI enlargement, with all parameters set to
default values, in particular, so that it iterates until conver-
gence, courtesy of Andrea Giachetti). Crops of the resulting
enlargements are shown in Figure 1.

5.2 250%
The Digital Photo Enlargement tutorial at Cambridge in
Colour (www.cambridgeincolour.com) shows enlargements
of a detailed but fairly low quality image of a cat performed
with a variety of methods. Similar enlargements, performed
with Nip2 bilinear, Catmull-Rom and Nohalo, are shown
in Figure 2 (test image used with the permission of Sean
McHugh).

5.3 400%
The academic web site of Xin Li, one of the developers of
NEDI, shows a contrast enhanced NEDI enlargement of a
75x75 pixel image of a flower (originally made available by
P. W. Wong) to 300x300. In Figure 3, a cropped version
of this enlargement is shown alongside un-enhanced results
obtained with Lanczos 3 (computed with ImageMagick [2])
and Nohalo.

6. QUANTITATIVE IMAGE QUALITY
TEST SUITE

A quantitative comparison of resampling methods based on
the re-enlargement of downsampled images was performed.

6.1 Tested Resamplers
Twenty linear and two nonlinear resampling methods, listed
in Table 1, were compared. All methods were used with de-
fault parameter values. We also tested ImageMagick filters
based on quadratic and cubic approximations of the Gaus-
sian curve. They performed more poorly than plain vanilla
Gaussian blur.

6.2 Consistent Image Alignment
The test suite is set up so that errors do not originate from
image size convention mismatch. For example, ImageMagick
6.3.6 10 resize filters use the “center” image size convention
(this is undocumented); for this reason, the authors modified
the relevant ImageMagick source code (resize.c) to make it
consistent with the “corner” convention.



Figure 2: 150x130 crops of enlargements of a low
quality 200x133 pixel image to 500x333: bilinear
(top), Nohalo (middle) and Catmull-Rom.

Figure 3: 300x260 crops of enlargements of a 75x75
pixel image to 300x300: Lanczos 3 (top), Nohalo
(middle) and NEDI (contrast enhanced).



Table 1: Compared resampling methods

method description (implementation)

Bessel Bessel windowed Jinc (ImageMagick)
Bicubic bicubic Lagrange interpolant (ImageMagick)
Bilinear bilinear (VIPS)

Blackman Blackman windowed Sinc (ImageMagick)
BoxFilter Exact area box filtering (by the authors)
CatRom Catmull-Rom (ImageMagick)
Gaussian Gaussian blur (ImageMagick)
Hamming Hamming windowed Sinc (ImageMagick)

Hann Hann windowed Sinc (ImageMagick)
Hermite Hermite with ∇f(j, i) = 0 (ImageMagick)

Kaiser Kaiser windowed Sinc (ImageMagick)
Lanczos3 Lanczos (3-lobes) (ImageMagick)
Mitchell Mitchell-Netravali bicubic (ImageMagick)

Monotone monotone bicubic spline (Scilab/SIVP/auth.)
NaKSplin not-a-knot bicubic spline (Scilab/SIVP/auth.)
NatSplin natural bicubic spline (Scilab/SIVP/authors)
Nearest nearest neighbour (ImageMagick)
Nohalo Nohalo (VIPS)
Parzen Parzen windowed Sinc (ImageMagick)
Welsh Welsh windowed Sinc (ImageMagick)

6.3 Test Images
Nine copyfree colour and two greyscale images were used:
one CG image of a living room (M. Gong), and ten digital
photographs/scans of small objects (J.-F. Avon), astronauts
and spacecraft (NASA), a woodcut print of a wave and boat
(K. Hokusai), a chapel (M. Ryckaert), a katydid (wikipedia
user wadems), a seated man in full regalia (S. Prokudin-
Gorskii), a vervet in a tree (W. Welles), as well as close
ups of a baby (M. Gong) and a man (A. Adams). First,
each image was cropped to 1681×1681. The cropped im-
ages were then downsampled with nearest neighbour—that
is, decimated—to 841×841, 561×561, 421×421, 337×337,
281×281, 241×241, 211×211, 169×169, 141×141, 121×121,
113×113 and 106×106. For example, the 841×841 down-
samples were created by keeping every other pixel of every
other row (keeping the top left pixel). Although one could
argue that decimation indirectly amplifies the noise and ar-
tifacts present in the full size images, decimation does not,
by itself, introduce error. For this reason, the downsampled
versions of the cropped originals were treated as if error free.

6.4 Description of the Upsampling Tasks
Eighteen resampling tasks were performed on each of the
eleven test images with each resampling method. For the
twelve integer magnification tests, the smaller images were
enlarged back to the original 1681×1681. For the six ra-
tional magnification tests, the smaller images were enlarged
to the next larger size. For example, 3/2 magnification was
tested by enlarging 561×561 images to 841×841. The re-
enlargements were then compared to the cropped originals
(integer magnifications) or their downsampled versions (ra-
tional magnifications). Statistics are reported in groups of
six enlargement ratios: small fractional (Table 2), small in-
teger (Table 3) and large integer magnifications (Table 4).

6.5 Error Metrics

Table 2: Aggregate test results for the magnification
factors 8/7, 7/6, 6/5, 5/4, 4/3 and 3/2

RMSE AAE MAE MSSIM

Nohalo 12.4133 5.3978 162.1 .862019
Mitchell 12.5117 5.6129 162.3 .859667
Bilinear 12.5276 5.5294 161.7 .860294

Monotone 12.5529 5.3625 163.7 .862043
Bessel 12.5818 5.7338 162.2 .856801

Bicubic 12.6162 5.5849 164.9 .860653
Gaussian 12.6903 5.8472 160.8 .853527
CatRom 12.7013 5.5857 165.7 .860482

BoxFilter 12.7120 5.5284 164.2 .858633
Parzen 12.9260 5.7497 168.2 .857633

Blackman 13.0069 5.8182 169.1 .856252
NatSplin 13.0310 5.8130 169.0 .855727

NaKSplin 13.0353 5.8155 169.0 .855669
Kaiser 13.1126 5.9045 170.3 .854365

Lanczos3 13.1548 5.9305 170.8 .853992
Hann 13.1587 5.9442 170.7 .853449

Hamming 13.1950 5.9747 171.0 .852728
Welsh 13.3994 6.1450 172.8 .848545

Hermite 13.8794 5.8289 180.1 .847375
Nearest 21.1768 9.1685 212.5 .725917

Four error metrics were used: Root Mean Squared Error
(RMSE), Average Absolute Error (AAE), Maximum Abso-
lute Error (MAE), and Mean Structural SIMililarity index
(MSSIM). MSSIM is analogous to a correlation in that larger
MSSIMs correspond to smaller errors [20]. Statistics are
amalgamated as follows: the RMSEs by taking the square
root of the mean of their squares, the AAEs, MAEs and
MSSIMs by plain averaging.

6.6 Discussion of the Results
Nohalo consistently obtained the best overall RMSE, the
second best AAE, the second best MSSIM, and one of the
best MAEs. Other methods performed well, most notably
the only other nonlinear resampler included in the test suite,
Fritsch and Carlson’s monotone cubic spline method [11],
which scored the lowest AAEs and highest MSSIMs. The
bicubic method of Mitchell-Netravali [16] also performed
well; so did bilinear.

6.7 Side Note About Boundary Conditions for
Global Cubic Splines

Not-a-knot boundary conditions for cubic splines—which
make interpolation exact on linears, and consequently sec-
ond order accurate—are generally prefered to natural bound-
ary conditions—which satisfy a stronger variational princi-
ple but are not exact on linears. In both this article’s com-
parative test suite and the variant found in [18], natural
boundary conditions, against conventional wisdom, achieve
better results. In our opinion, this is because images are
generally not smooth enough for the usual error bounds to
be fully applicable.

6.8 Shortcomings of the Test Suite
The main shortcoming of the test suite is that downsam-
pling/reconstruction test suites measure the accuracy of a
resampler as a reconstructor, with only indirect bearing on



Table 3: Aggregate test results for the magnification
factors 2, 3, 4, 5, 6 and 7

RMSE AAE MAE MSSIM

Nohalo 11.0642 4.6603 169.7 .841853
Mitchell 11.1710 4.8979 167.9 .837422

Monotone 11.1744 4.6348 170.8 .842780
Bilinear 11.1883 4.7889 169.3 .839327
Bicubic 11.2436 4.8161 172.3 .838083
Bessel 11.2499 5.0196 166.9 .833130

CatRom 11.3090 4.8158 173.1 .838494
Gaussian 11.3767 5.1412 165.9 .831173

Parzen 11.5040 4.9490 175.6 .834943
Blackman 11.5754 5.0052 176.3 .832974
NatSplin 11.5973 4.9985 176.5 .831978

NaKSplin 11.6044 5.0034 176.7 .831850
Kaiser 11.6695 5.0768 177.2 .830289

Lanczos3 11.7090 5.1006 177.5 .829520
Hann 11.7111 5.1103 177.5 .828996

Hamming 11.7428 5.1354 177.7 .827914
Welsh 11.9273 5.2800 179.0 .821748

Hermite 12.4025 5.0585 187.1 .822265
BoxFilter 14.3752 5.8072 199.3 .792552

Nearest 19.2097 8.2889 216.7 .725886

resampling accuracy. That is: What such tests really ad-
dress is how close Nohalo and the other resamplers come
to being left inverses of the projection operator defined by
the chosen downsampling method. For example, the authors
would expect Nohalo to lose its top ranking if downsampling
is performed with box filtering instead of decimation. The
authors hope to address this shortcoming in the future with
carefully designed image rotation tests.

Downsampling by decimation generally increases the local
variance of pixel values. Put another way, images downsam-
pled with nearest neighbour not only are less detailed but
also considerably less smooth. Consequently, the present
rankings may be more relevant for noisy or destructively
compressed images than high quality digital photographs.

The rankings obtained in a previously published version
of the test suite, in which downsampling was performed with
(exact area) box filtering instead of nearest neighbour, were
extremely different [18]. For example, Bessel (windowed
Jinc), which ranks about fifth in the present test suite, per-
formed so poorly in the box filtered version that it was kept
off the charts. The reason for this discrepancy is that box
filtering, unlike decimation, is a smoothing operator. Conse-
quently, the downsampled images used in [18] were smoother
than typical digital photographs and scans, which allowed
windowed sinc methods to shine.

Another shortcoming of the test suite is that upsampling
was performed without gamma correction. That is, inter-
polation was performed using pixel values without regard
to colour profiles. (When downsampling with decimation,
colour profiles are irrelevant. However, in the case of box
filtering test suites as found in [18], colour profiles should
also be taken into account in the averaging performed in
the course of box filtering.) This gives an advantage to
monotone methods, because they avoid the magnification
of overshoots and undershoots caused by an invalid linear
interpretation of pixel values.

Another important shortcoming of this test suite is that

Table 4: Aggregate test results for the magnification
factors 8, 10, 12, 13, 14, 15 and 16

RMSE AAE MAE MSSIM

Nohalo 18.9989 9.0238 209.8 .734328
Bilinear 19.0126 9.1451 208.8 .732630
Mitchell 19.0242 9.2099 209.9 .731337

Bessel 19.0833 9.3927 209.3 .729001
Gaussian 19.0955 9.4933 207.0 .729239

Monotone 19.2584 8.9184 211.4 .735694
Bicubic 19.2622 9.2554 213.5 .728511

CatRom 19.4490 9.2483 214.6 .728565
Parzen 19.8338 9.5489 217.3 .724724

Blackman 19.9557 9.6677 218.0 .722551
NatSplin 20.0005 9.7106 218.3 .721542

NaKSplin 20.0349 9.7374 219.5 .721190
Kaiser 20.1110 9.8143 219.0 .719744
Hann 20.1785 9.8817 219.3 .718445

Lanczos3 20.1805 9.8499 219.3 .718578
Hamming 20.2280 9.9296 219.5 .717322

Welsh 20.5106 10.2085 220.9 .711307
Hermite 21.0558 9.5137 222.3 .707548

BoxFilter 25.1472 11.2354 229.9 .668163
Nearest 31.0015 14.5384 232.5 .639862

error measures are only loosely correlated with “perceptual
accuracy.” Perceptually, not all errors and resampling ar-
tifacts are created equal. Although MSSIM attempts to
bridge the gap between the quantitative and the subjective,
the only way to measure subjective quality is to involve peo-
ple.

A wider variety of nonlinear resampling methods, edge-
enhancing or not, should be included. Finally, the accuracy
of the ImageMagick filters should be double checked.

7. CPU IMPLEMENTATION (GEGL)
GEGL, the GEneric Graphics Library, is an object ori-
ented image processing and compositing system. Written in
C, GEGL will bring non-destructive editing, high dynamic
range, and improved handling of very large images to the
next major release of GIMP (GNU Image Manipulation Pro-
gram). Free and open source, GEGL runs on most operating
systems. Nohalo, under the name“sharp,” is an integral part
of GEGL, and its source code (gegl-sampler-sharp.c) can be
downloaded from gegl.org [1].

GEGL is “image type agnostic,” relying on an external
library to convert, on demand, image pixel data to and from
linear RGBA float buffers. This greatly simplifies the code
base, since a uniform data type is seen by methods (this is
expected to change in the future).

Intended for real time, interactive use by graphic artists
and others, GEGL is structured so that the task-defining
DAGs are dynamic structures. For this reason, GEGL
is demand-driven, meaning that output pixel values are
computed somewhat independently, each pixel “pulling” the
needed input data through the DAG, the needed operations
being performed along the way. With this data processing
model, implementing a separate gradient stage for Nohalo is
not really an option, because it would add an extra node to
the DAG without allowing for the recycling of slopes com-
mon to several output pixels.



Nohalo is implemented as a “single stage” method in
GEGL. Basically, the method is passed the double precision
coordinates of the sampling location within the input image
and a pointer which is used to return computed values. A
key aspect of the implementation is that GEGL fulfils re-
quests for a pointer to a specific input pixel by embedding
it within a buffer large enough to contain the stencil and
with missing values set in accordance to the abyss policy;
this buffer is constructed so that it can be reused, without
change, in the computation of other pixel values.

8. EMBARRASSINGLY PARALLEL
CPU/SMP IMPLEMENTATION (VIPS)

VIPS is a free and open source image processing library de-
veloped over several EU-funded research projects [15]. Writ-
ten in C and C++, VIPS and its GUI Nip2 run on Unix,
Windows and OS X. Nohalo is an integral part of VIPS, and
its source code (nohalo.cpp) can be downloaded from [5] and
SourceForge.

Like many recent image processing systems, VIPS is
demand-driven. A DAG of processing elements is built as
operations are invoked. When the final operation connects
to a data sink, which can be a disc file, a memory area, or
a screen display, the sink pulls pixels through the pipeline
one tile at a time. Once the pipeline has been built there is
little synchronisation between threads and almost no mem-
ory allocation. As the computation proceeds, work is dis-
tributed among the available processing elements, tile sizes
are adjusted, data source resources are shared, common re-
gions of pixels are reused, and so on. This results in linear
speedup for many image processing tasks up to at least 32
CPUs. Because no image (initial, intermediate or final) is
fully present in memory, VIPS usually needs little RAM and
easily handles very large images.

Adding a new interpolator to VIPS requires subclassing
VipsInterpolator, setting the size of a rectangular input pixel
window large enough to contain the stencil of the interpola-
tor, and implementing the interpolate method.

Although GEGL and VIPS are fairly similar, they are also
quite different, owing to VIPS’ batch processing bias. One
difference is that, although VIPS’ task-defining DAGs are
fully configurable, they are essentially static, in the sense
that changing any part of the task requires destroying and
rebuilding that part of the DAG. Another is that VIPS im-
plements boundary conditions by extending the input image
instead of implementing an abyss policy at the tile level. Yet
another difference is that different image data types (8 to 32
bit signed/unsigned integers, single or double precision real
or complex floating point numbers) are handled differently
by the resamplers. Roughly speaking, the DAGs which de-
fine processing tasks are implemented in a type polymorphic
way. Yet, every type gets custom treatment under the hood.
For example, VIPS bilinear and bicubic resamplers use fixed
point arithmetic and table lookups to compute the values
of the cardinal basis functions for small integer data types,
which allows the computation to bypass the FPU.

Falling short of this level of detail, the VIPS implementa-
tion of Nohalo has three stages: the first stage sets pointer
shifts according to the type of the input image; the second
stage implicitly performs the image doubling in double pre-
cision, the same code performing this task for all data types
through the use of macros; and the third stage performs the

final bilinear interpolation and downcasts using rounding
methods matched to individual data types.

9. GPU IMPLEMENTATION (DIRECTX)

Figure 4: 64x64 pixel crops of the horizontal (top
left) and vertical (top right) gradient textures (grey
means 0) produced in the first stage (Listing 1), and
corresponding 128x128 crop of the double-density
image produced in the second stage (Listing 2).

The GPUs built into modern graphics cards allow computa-
tional kernels to run on multiple data in parallel. GPUs are
designed for 3D graphics applications in which the compu-
tational kernels are used to calculate the transformation and
lighting of each vertex (the so-called vertex shaders) or to
compute the shading of each rasterized pixel (pixel shaders).
Other tasks are often cast as processes with one or more
rendering passes, each involving the following sequence of
operations:

1. Represent the input data as a collection of 2D or 3D
arrays to be loaded into the video memory as textures;

2. Load the algorithm into the GPU as a pixel shader;

3. Set either the screen or a pixel buffer in video memory
as the rendering target; and

4. Execute the shader by rendering an image-sized rect-
angle.



GPU implementations straddle the boundary between
demand-driven (“pull”) and data-driven (“push”). The rea-
son for this is that, although the pixel or vertex texture val-
ues are computed by essentially independent “pull” threads,
global results can be stored in textures which are “pushed”
toward later stages of the computation. Two groups of inter-
mediate textures are used in our three-stage GPU implemen-
tation: two textures which store gradient values (the slopes
computed with Eq. (2)–(4)), and a texture which holds the
double-density image (given by Eq. (8)).

The first stage loads the input image as a colour texture,
calculates the horizontal and vertical slopes using a pixel
shader, and stores them into two colour textures. The source
code for this stage is shown in Listing 1; the inputs are
sImage, the input colour image, and vStepX and vStepY,
the distance between adjacent pixels in texture coordinates.
The resulting gradient textures are illustrated at the top of
Figure 4.

The second stage uses the input image and the two gra-
dient textures to interpolate the input image at the double-
density pixel locations, yielding a new image with 2m −
1 × 2n − 1 pixels which is, again, stored as a texture. The
corresponding pixel shader is shown in Listing 2; the in-
put textures are sImage and sGradX (horizontal slopes) and
sGradY (vertical slopes); vSize holds the dimensions of the
input image. An example of double-density image produced
by this shader is shown at the bottom of Figure 4.

The third and final stage takes the double-density image
as input texture and scales it to the user specified resolution
using bilinear interpolation. Because GPUs have bilinear
interpolation built-in, this stage does not require a shader.

The code is lean: The Microsoft HLSL Shader Compiler
fills 25 instruction slots for the gradient computation (List-
ing 1), and 29 for the 2X upsizing (Listing 2).

10. PERFORMANCE

10.1 Laptop Image Resizing and Rotation
Benchmarks (GEGL and VIPS)

The GEGL implementation of Nohalo performs resampling
tasks faster than GEGL bicubic and barely slower than
GEGL bilinear. This unduly flattering picture of the per-
formance of Nohalo arises from the fact that GEGL has
a relatively high run-time overhead, and that GEGL bicu-
bic, which implements the full two-parameter family of cu-
bic splines, is not optimised for speed. (One of the authors
helped tune GEGL bilinear, however.)

The following VIPS benchmarks level the playing field.
Bilinear, Catmull-Rom and Nohalo were programmed for
VIPS by two of the authors. The benchmarks were per-
formed on 32-bit float images so that the integer optimi-
sation tricks built into the VIPS versions of bilinear and
Catmull-Rom and the careful rounding built into Nohalo
do not come into play. The benchmarks were performed in
two formats: uncompressed tiled (128x128) TIFF, and VIPS
(.v), a scanline image format analogous to PPM. (Random
access is not efficiently implemented in LibTIFF for scanline
(non-tiled) images, hence the decision to use .v.)

In the first set of benchmarks, three tasks were performed
on 2500x2500 RGB float (72MB) images with a dual-core
Intel Core 2 2Ghz laptop running in 32-bit mode with 2GB
RAM: resizing (downsampling) to 1148x1148, rotating by
5 degrees about the top-left corner (maintaining the image

size), and resizing (upsampling) to 3924x3924 (177MB). As
seen in Table 5, Nohalo is about three times slower than bi-
linear when few output pixels are computed per input pixel
(downsampling and rotating), and about as fast when up-
sampling, in which case I/O is significant and on-chip branch
prediction more successful. Most of the run time is actuallly
spent outside of the resampling code when upsampling. For
example, out of the 3.87s total run time reported in Table 5
for bilinear upsampling, only 1.92s is “user” time according
to the linux time command.

Table 5: Resampling 2500x2500 RGB float natural
images on a dual-core laptop: total run times (in
seconds) using 1/2 cores for VIPS scanline (.v) and
TIFF tiled (.tif) formats

method (format) downsample rotate upsample

bilinear (.v) 0.22/0.17 0.76/0.57 3.87/3.68
bilinear (.tif) 0.36/0.31 0.90/0.70 3.84/3.91
Catmull-Rom (.v) 0.31/0.21 1.13/0.73 3.96/3.67
Catmull-Rom (.tif) 0.45/0.36 1.31/0.87 4.08/3.87
Nohalo (.v) 0.77/0.45 3.06/1.71 7.87/4.31
Nohalo (.tif) 0.90/0.59 3.11/1.81 8.12/4.61

10.2 Performance Depends on Image Content
In the C and C++ Nohalo code, signs and minima are com-
puted in order to compute the minmods of pairs of slopes
as well as the pointer shifts needed to reflect the stencil.
If signs and minima are computed without branching, the
speed of execution of Nohalo does not depend on the image
content. If, however, signs and minima are computed with
flags and conditional moves, as is the case for our GEGL
and VIPS implementations, run times depend on whether
branch prediction successfully guesses the signs of slopes as
well as the minima of their absolute values. Consequently,
Nohalo runs faster on smooth images. Also, Nohalo’s per-
formance relative to bilinear and bicubic is better for up-
sampling than downsampling because the same signs and
minima are computed more than once when several output
pixels are computed with the same stencil, hence they are
easy to “predict.”

We re-ran the benchmarks on maximally smooth images,
namely monochrome images. As seen in Table 6, the run
times for Nohalo were significantly reduced. (The run times
for bilinear and Catmull-Rom were basically unchanged.)

Table 6: Resampling black 2500x2500 RGB float im-
ages on a dual-core laptop: total run times using 1/2
cores for VIPS and tiled TIFF formats

method (format) downsample rotate upsample

Nohalo (.v) 0.51/0.31 2.08/1.20 5.24/3.93
Nohalo (.tif) 0.76/0.56 2.26/1.44 5.45/4.44

Implementing minmod with bit twiddling would most likely
speed up Nohalo.

10.3 8-Core Desktop Image Resizing and
Rotation Benchmarks (VIPS)

In the third set of benchmarks, a desktop computer with
two quad-core Intel Xeon 1.86GHz CPUs with 8GB RAM
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Figure 5: Resampling 5000x5000 float RGB images
on a twin quad-core desktop: total run time (in sec-
onds) versus number of cores.

total performed analogous tasks on 5000x5000 RGB float
images: downsampling to 2296x2296, rotating by 5 degrees
about the top-left corner, and upsampling to 7848x7848.

The results are shown in Figure 5. Unsurprisingly, the
best scalability is seen between one and two cores, and when
using Nohalo, which performs many operations on a stencil
smaller than Catmull-Rom’s, hence has the best arithmetic
to I/O ratio. For example, rotating the scanline (.v) image
with Nohalo takes 16.57s with one core and 8.27s with two.
Such perfect scalability is not seen across the board: The
tiled TIFF multi-core results, in particular, suffer greatly
from the fact that LibTIFF is not thread-friendly.

10.4 GPU Video Enlargement Benchmarks
(DirectX)

The enlargement ratios involved in TV to HDTV conver-
sion, being approximately equal to two, are ideally suited
for Nohalo, because then the final bilinear stage of Nohalo
resamples the double density image to approximately the
same density, so that the lack of derivative continuity of
the reconstructed intensity surface is not as apparent as it
would be with higher upsampling ratios. Indeed, videos re-
sampled with Nohalo are noticeably more visually pleasing
than those resampled with bilinear. In addition, because
the implementation is branch-free, the GPU’s SIMD archi-

Table 7: GPU benchmark results: Resizing DVD
video to cropped HDTV on consumer hardware

hardware
GPU VRAM Nohalo bilinear ratio

NVIDIA GeForce 256MB 30 fps 36 fps .83
6800

NVIDIA GeForce 256MB 33 fps 36 fps .92
8600 GT

ATI Mobility 512MB 42 fps 349 fps .12
Radeon X1400

NVIDIA GeForce 512MB 575 fps 1985 fps .29
9800 GT

NVIDIA GeForce 1024MB 606 fps 1694 fps .36
9800 GX2

tecture yields identical frame rates for colour and grayscale
video.

The frame rates obtained by Nohalo are comparable to
those of hardware bilinear on desktop PCs. DVD video
(720x480) was enlarged to HDTV (cropped to 1620x1080 to
maintain the aspect ratio) directly with the vendor’s hard-
ware bilinear upsampler (with no Nohalo involvement what-
soever), and with Nohalo (which involves the vendor’s hard-
ware bilinear in its final stage). As seen in Table 7, Nohalo
achieved at least 30 fps, a frame rate suitable for streaming
video, on all platforms. The performance of Nohalo rela-
tive to hardware bilinear is even better when DVD video
is enlarged to full HD without cropping (1920x1080); this
is not surprising given that the fixed cost of computing the
double-density image is spread over more pixels. ([13] re-
ports high frame rates for local power-of-two zooming with
an alternative edge-enhancing resampling method.)

11. CONCLUSION
Nohalo is a general purpose resampling method which runs
fast on a variety of platforms. Accurate, co-convex and
mildly antialiasing, it produces pleasant enlargements of nat-
ural images without adding nonlinear artifacts.
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