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Welcome to the PAST! 

This program was originally designed as a follow-up to PALSTAT, a software package for 
paleontological data analysis written by P.D. Ryan, D.A.T. Harper and J.S. Whalley (Ryan et al. 1995). 
Through continuous development for more than twenty years, PAST has grown into a comprehensive 
statistics package used not only by paleontologists, but in many fields of life science, earth science, 
engineering and economics. 

Further explanations of many of the techniques implemented together with case histories are found 
in the book “Paleontological data analysis” (Hammer & Harper 2024). 

If you have questions, bug reports, suggestions for improvements or other comments, we would be 
happy to hear from you. Contact us at ohammer@nhm.uio.no. For bug reports, remember to send us 
the data used, as saved from PAST, together with a complete description of the actions that lead to 
the problem. 

The latest version of Past, together with documentation and a link to the Past mailing list, is found at 
https://www.nhm.uio.no/english/research/resources/past 

We are grateful if you cite PAST in scientific publications. The official reference is Hammer et al. 
(2001). 
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Installation 

Windows 

Just download the file ‘Past4.zip’ (zipped) and put it anywhere on your hard disk. Double-clicking the 

file will start the program. Windows will consider this a breach of security and will ask if you trust the 

software provider. If you want to use the program, you will have to answer yes. 

We suggest you make a folder called ‘past’ anywhere on your hard disk, and put all the files in this 

folder.  

The lack of “formal” Windows installation is intentional and allows installation without administrator 

privileges. 

Mac 

Starting from version 4.07, Past is now in the Apple Store. Search for “Past4” there or use the link on 

the Past home page. 

Quick start 
Past is to some extent self-explanatory, but a couple of important functions are a bit difficult to find: 

How do I export graphics? 

For publication quality, save the graphic in the SVG or PDF 

vector format. Click the “Graph settings” button next to the 

graphic. In the graph preferences window, click the “Export 

picture” button (arrow on the right). You can open SVG files in 

Adobe Illustrator, Corel Draw or the free program Inkscape. 

SVG files are supported by most web browsers, and can be 

placed directly on a web page. 

You can also export the picture in bitmap formats (JPG, TIF 

etc.), but the quality is lower, and you cannot easily edit the 

graphic. Or you can copy-paste the image as a bitmap by 

clicking the “Copy” button under the graphic. 

Note: On Mac, you must manually provide the correct file extension (e.g. .svg or .jpg) when typing 

the file name, or the file type will not be recognized by other programs. 

 

How do I organize data into groups? 

This requires a separate group column, with a group identifier for each row. In the example (1) there 

is a group column “Lithology”, with two groups LS and MS. To specify that “Lithology” is a group 

column, first select the “Column attributes” box above the spreadsheet, or double-click the top cell 

(name cell) of any column. This will show two extra rows at the top of the spreadsheet (2). Then click 

a few times on the “Type” cell of the group column, to bring up a menu where you select “Group” 
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(3). Then click elsewhere to update, and you can deselect “Column attributes” if you wish. The group 

column should now be marked with a G (4). 
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The spreadsheet and the Edit menu 

PAST has a spreadsheet-like user interface. Data are entered as an array of cells, organized in rows 
(horizontally) and columns (vertically).  

Entering data  

To input data in a cell, click on the cell with the mouse and type in the data. The cells can also be 
navigated using the arrow keys. Any text can be entered in the cells, but most functions will expect 
numbers. Both comma (,) and decimal point (.) are accepted as decimal separators.  

Absence/presence data are coded as 0 or 1, respectively. Any other positive number will be 
interpreted as presence. Absence/presence-matrices can be shown with black squares for presences 
by ticking the 'Square mode' box above the array.  

Genetic sequence data are coded using C, A, G, T and U (lowercase also accepted).  

Missing data are coded with question marks (‘?'). Unless support for missing data is specifically 
stated in the documentation for a function, the function may not handle missing data correctly, so be 
careful.  

The convention in PAST is that items occupy rows, and variables columns. Three brachiopod 
individuals might therefore occupy rows 1, 2 and 3, with their lengths and widths in columns A and B. 
Cluster analysis will always cluster items, that is rows. For Q-mode analysis of associations, samples 
(sites) should therefore be entered in rows, while taxa (species) are in columns. For switching 
between Q-mode and R-mode, rows and columns can easily be interchanged using the Transpose 
operation.  

Selecting areas  

Most operations in PAST are only carried out on the area of the array which you have selected 
(marked). If you try to run a function which expects data, and no area has been selected, you will get 
an error message.  

• A row is selected by clicking on the row label (leftmost column).  

• A column is selected by clicking on the column label (top row).  

• Multiple rows are selected by selecting the first row label, then shift-clicking (clicking with 
the Shift key down) on the additional row labels.  

• Multiple columns are similarly marked by shift-clicking the additional column labels. 

• You can also select disjunct rows or columns by ctrl-clicking. 

• The whole array can be selected by clicking the upper left corner of the array (the empty grey 
cell) or by choosing 'Select all' in the Edit menu.  

• Smaller areas within the array can be selected by clicking and shift-clicking. 
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Moving a row or a column  

Select the ‘Drag rows/columns’ button in the ‘Click mode’ box. A row or a column can now be moved 
simply by clicking on the label and dragging to the new position. 

Renaming rows and columns  

When PAST starts, rows are numbered from 1 to 99 and columns are labelled A to Z. For your own 
reference, and for proper labelling of graphs, you should give the rows and columns more descriptive 
but short names.  

Select the 'Row attributes' option above the spreadsheet to see an editable column of the row 
names. Select the ‘Column attributes’ option to see an editable row of the column names. 

Increasing the size of the array  

By default, PAST has 99 rows and 26 columns. If you should need more, you can add rows or columns 
by choosing 'Insert more rows' or 'Insert more columns' in the Edit menu. Rows/columns will be 
inserted after the marked area, or at the bottom/right if no area is selected. When loading large data 
files, rows and/or columns are added automatically as needed.  

Cut, copy, paste  

The cut, copy and paste functions are found in the Edit menu. You can cut/copy data from the PAST 
spreadsheet and paste into other programs, for example Word and Excel. Likewise, data from other 
programs can be pasted into PAST – these need to be in a tab-separated text format. 

Before pasting, select the top left cell of the spreadsheet area in Past you want to paste into. Take 
care not to paste into the possibly hidden column and row attribute fields, unless you mean to. 

Remove  

The remove function (Edit menu) allows you to remove selected row(s) or column(s) from the 
spreadsheet. The removed area is not copied to the paste buffer. 

Row colors and symbols  

Each row can be given a color and a symbol (dot, cross, square etc., or user-defined image). These 
will be used in scatter plots and other plots. Select the ‘Row attributes’ option (or double-click the 
name cell of any row) to edit the rows and colors individually, or use the ‘Row colors/symbols’ 
function to set all selected rows simultaneously (optionally based on the group, see below). 

Selecting datatypes for columns, and specifying groups  

Each column can be given a datatype using the ‘Column attributes’ mode. Select the ‘Column 
attributes’ box above the spreadsheet, or double-click the name cell of any column. Then click on the 
‘Type’ cell of the column a few times to bring up a small menu where the data type can be selected. 



13 

 

The data types are as follows: 

Unspecified (-) 

This is the default datatype. 

Ordinal, nominal or binary 

Specifying one of these types is only required if you wish to use mixed similarity/distance measures. 

Group 

In a group column, you can enter identifiers for groups of data. You can use integers, or strings such 
as ‘males’ and ‘females’ (without the apostrophes). This will allow group-based polygons or ellipses 
in scatter plots. A group column is also required for many analyses, such as MANOVA. It is 
recommended to have rows in the same group as consecutive. Some analyses (e.g. two-way ANOVA) 
require two or even more group columns. 

Note that unlike the first versions of Past, there are no automatic links between colors, symbols and 
groups. If you wish to use different colors and/or symbols for different groups, you can set up the 
group column first and then use the ‘Row colors/symbols’ function in the Edit menu to assign 
colors/symbols accordingly. 

String 

So far, this type is only used in the Stratigraphic chart module, for specifying names of periods, zones 
etc. 

Remove uninformative rows/columns 

Rows or columns can be uninformative especially with respect to multivariate analyses. Such rows 
and columns should be considered for removal. Several types can be searched for and removed: 
Rows or columns with only zeroes, rows or columns with only missing data (‘?’), rows or columns 
with only one non-zero cell (singletons), rows or columns with constant values (zero variance). 

Transpose  

The Transpose function, in the Edit menu, will interchange rows and columns. This is used e.g. for 
switching between R mode and Q mode in cluster analysis.  

Grouped columns to multivar  

Converts from a format with multivariate items presented in consecutive groups of N columns to the 
Past format with one item per row and all variates along the columns. For N=2, two specimens and 
four variables a-d, the conversion is from  

a1 b1 a2 b2 

c1 d1 c2 d2 
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to  

a1 b1 c1 d1 

a2 b2 c2 d2 

Grouped rows to multivar  

Converts from a format with multivariate items presented in consecutive groups of N rows to the 
Past format with one item per row and all variates along the columns. For N=2, two specimens and 
four variables a-d, the conversion is from  

a1 b1 

c1 d1 

a2 b2 

c2 d2 

to  

a1 b1  c1 d1 

a2 b2  c2 d2 

Stack grouped rows into columns  

Stacks groups horizontally along columns. This can be useful e.g. for performing univariate statistics 
on pairs of columns across groups. 

Rows, cols, values to table 

Expects three columns of data. The first column contains categories coded as numbers or strings, 
identifying rows in the output table. The second column contains categories identifying columns. The 
third column contains the values to be filled into the output table. 

Value pairs to matrix 

Similar to “Rows, cols, values to table” but expects only two columns of numbers or strings. Each row 
is one observation. Each column contains categories, e.g. Europe, Africa, Asia in the first column; 
Dogs, Cats, Foxes in the second column. The occurrences of different combinations are counted, 
giving a full data matrix, in this case with localities in columns and taxa in rows. 

Samples to events (UA to RASC)  

Given a data matrix of occurrences of taxa in a number of samples in a number of sections, as used 
by the Unitary Associations module, this function will convert each section to a single row with 
orders of events (FADs, LADs or both) as expected by the Ranking-Scaling module. Tied events (in the 
same sample) will be given equal ranking.  
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Events to samples (RASC to UA)  

Expects a data matrix with sections/wells in rows, and taxa in columns, with FAD and LAD values in 
alternating columns (i.e. two columns per taxon). Converts to the Unitary Associations 
presence/absence format with sections in groups of rows, samples in rows and taxa in columns.  

Loading and saving data  

The 'Open' function is in the File menu. You can also drag a file from the desktop onto the PAST 
window. PAST uses a text file format for easy importing from other programs (e.g. Word), as follows:  

The top left cell must contain a colon (:). Cells are tab-separated. There are two top rows with data 
types and column names, and three left columns with colors, symbols and row names. Here is an 
example: 

:   - - - Group 
   Slow Med Fast Species 
Black Dot North 4 2 3 0 
Black Dot South 4 3 7 0 
Red Dot West 18 24 33 1 
Red Dot East 10 6 7 1 

Optional additional fields can be added to the end of the file, e.g.: 

<image n>Filename Specifies an image file name to be used for the ‘Image n’ symbol, n=1 to 8. 
 

In addition to this format, Past can also detect and open files in the following formats:  

• Excel; only the first worksheet, and only .XLS format, not .XLSX.  
• Nexus (see below), popular in systematics.  
• TPS format developed by Rohlf. The landmark, outlines, curves, id, scale and comment fields 

are supported, other fields are ignored. 
• NTSYS. Multiple tables and trees are not supported. The file must have the extension ‘.nts’. 
• FASTA molecular sequence format, simplified specification according to NCBI. 
• PHYLIP molecular sequence format. The file must have the extension ‘.phy’. 
• Arlequin molecular sequence format. For genotype data the two haplotypes are 

concatenated into one row. Not all options are supported. 
• TNT character matrix format, with some restrictions. 
• BioGraph format for biostratigraphy (SAMPLES or DATUM format). If a second file with the 

same name but extension '.dct' is found, it will be included as a BioGraph dictionary.  
• RASC format for biostratigraphy. You must open the .DAT file, and the program expects 

corresponding .DIC and .DEP files in the same directory.  
• CONOP format for biostratigraphy. You must open the .DAT file (log file), and the program 

expects corresponding .EVT (event) and .SCT (section) files in the same directory. 
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If the file is not recognized, it is assumed to be a general text file with values separated by white 
space, tabs or commas. The program will then ask about the format of the file. 
 

 

Importing data from Excel 

There are several ways to get data from Excel to Past. 

• Copy from Excel and paste into PAST. Make sure you click (select) the top left cell where the 
data should be placed in Past before pasting. This will depend on whether row or column 
attributes are included in the data. 

• Open the Excel file from PAST (only .XLS, not .XLSX). 
• Save as tab-separated text in Excel. The resulting text file can be opened in PAST.  

Reading and writing Nexus files  

The Nexus file format is used by many systematics programs. PAST can read and write the Data 
(character matrix) block of the Nexus format. Interleaved data are supported. Also, if you have 
performed a parsimony analysis and the 'Parsimony analysis' window is open, all shortest trees will 
be written to the Nexus file for further processing in other programs (e.g. MacClade or Paup). Note 
that not all Nexus options are presently supported.  

Counter  

A counter function is available in the Edit menu for use e.g. at the microscope when counting 
microfossils of different taxa. A single row (sample) must be selected. The counter window will open 
with a number of counters, one for each selected column (taxon). The counters will be initialized 
with the column labels and any counts already present in the spreadsheet. When closing the counter 
window, the spreadsheet values will be updated.  

Count up (+) or down (-) with the mouse, or up with the keys 0-9 and a-z (only the first 36 counters). 
The bars represent relative abundance. A log of events is given at the far right - scroll up and down 
with mouse or arrow keys. An optional auditive feedback has a specific pitch for each counter. 
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Transform menu 

These routines subject your data to mathematical operations. This can be useful for bringing out 
features in your data, or as a necessary preprocessing step for some types of analysis.  

Logarithm  

The Log function in the Transform menu log-transforms your data using the base-10 logarithm. If the 
data contain zero or negative values, it may be necessary to add a constant (e.g. 1) before log-
transforming (use Evaluate Expression x+1).  

This is useful, for example, to compare your sample to a log-normal distribution or for fitting to an 
exponential model. Also, abundance data with a few very dominant taxa may be log-transformed in 
order to downweight those taxa.  

Missing data supported. 

Subtract mean 

This function subtracts the column mean from each of the selected columns. The means cannot be 
computed row-wise. 

Missing values supported. 

Remove trend  

This function removes any linear trend from a data set (two columns with X-Y pairs, or one column 
with Y values). This is done by subtraction of a linear regression line from the Y values. Removing the 
trend can be a useful operation prior to time series analyses such as spectral analysis, auto- and 
cross-correlation and ARMA. 

Missing data supported. 

Row percentage  

All values converted to the percentage of the row sum. Missing values supported. 

Row normalize length  

All values divided by the Euclidean length of the row vector. This is sometimes called chord 
transformation. Missing values supported. 

Box-Cox 

The Box-Cox transformation is a family of power transformations with the purpose of making data x 

more normally distributed. The transformation has a parameter : 
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If the smallest input value is zero or negative (which would invalidate the transform), a constant is 
added to all data such that the minimum input value becomes 1. 

The default value of the parameter is calculated by maximizing the log likelihood function: 

( ) ( )
=

−+−=
n

i

ix
n

L
1

2 ln1ˆln
2

  , 

where σ2
 is the variance of the transformed data. This optimal value can be changed by the user, 

limited to the range -4    4. 

Missing values supported. 

Compositional data transforms 

Multivariate data which sum to a constant by design, such as percentages summing to 100, are called 
compositional data (Aitchison 1986). Such data contain “spurious” correlations because as one value 
increases, the others will have to decrease. Some multivariate analyses and tests such as PCA can be 
negatively affected by this. Past includes three commonly used transforms that can be applied to 
compositional data before further analysis. 

The data should have the usual multivariate format, with variables in columns and items in rows. The 
values in each row should sum to a constant, e.g. 1 or 100. Negative values are not allowed, and 
missing data are not supported. 

Additive logratio (ALR) 

The input data (one row) is a vector x with N dimensions 

alr(𝒙) = [𝑙𝑛
𝑥1

𝑥𝑁
, ⋯ , 𝑙𝑛

𝑥𝑁

𝑥𝑁
] 

That last element is equal to zero, showing that the transformed data have dimension N-1. As the 
ALR is computed with respect to the last element xN, it may be a good idea to place a low-noise 
variable with high values in the last column. 

Center logratio (CLR) 

clr(x) = [ln
𝑥1

𝑔(x)
, … , ln

𝑥𝑁

𝑔(x)
] 

where g(x) is the geometric mean of the data vector. This is equivalent to a simple log transform 
followed by subtraction of the mean. 
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Isometric log ratio (ILR) 

The isometric logratio transform was introduced by Egozcue et al. (2003). It has some good 
theoretical properties, but the results are difficult to interpret because the transformed variables are 
complicated combinations of the original variables. 

Define a matrix H0 with dimensions NxN, with ones in the first row, and each subsequent row j 
containing j-1 ones followed by the value –(j-1) on the diagonal followed by zeros: 

H0 =

[
 
 
 
 
 
1 1 1 1 ⋯ 1
1 −1 0 0 ⋯ 0
1 1 −2 0 ⋯ 0
1 1 1 −3 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 1 ⋯ −(𝑁 − 1)]

 
 
 
 
 

 

Then, normalize each row to unit length. This gives the so-called Helmert matrix H of order N. 
Remove the first row of ones, giving an (N-1) x N matrix V (we had that first row there just to make 
the connection to the Helmert matrix). Finally, apply the center logratio to the data and pre-multiply 
with –V to obtain the ilr: 

𝑖𝑙𝑟(𝒙) = −𝑽𝑐𝑙𝑟(𝒙) 

The negative sign is included only to reproduce the results of the compositional package in R. Also 
note that R defines the Helmert matrix as the transpose of H above. 

The transformed data vector has dimensions N-1. The last column N is filled with zeros for reference, 
and should not be included in further analysis. 

Treatment of zero values 

All three transforms involve log-transforming the original data, so zero values cannot be transformed 
directly. Past treats zero values following equation (6) in Martin-Fernandez et al. (2003): 

𝑟𝑗 = {
𝛿 if 𝑥𝑗 = 0

(1 −
𝑧

𝑐
) 𝑥𝑗 if 𝑥𝑗 > 0

 

Here, δ is a small value, approximating to the lower detection limit of the measurements. This value 
can be set by the user in the “Zero threshold” box (default 0.01). The z is the number of zeroes in the 
original data vector, while c is the total sum, computed from the data (e.g. 100 for percentages). 

References 

Aitchison J. 1986. The Statistical Analysis of Compositional Data. Chapman & Hall. 

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barcelo-Vidal, C. 2003. Isometric logratio 
transformations for compositional data analysis. Mathematical Geology 35:279-300. 
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Martin-Fernandez, J.A., Barcelo-Vidal, C., Pawlowsky-Glahn, V. 2003. Dealing with zeros and missing 
values in compositional data sets using nonparametric imputation. Mathematical Geology 35:253-
278 

Remove size from distances  
Attempts to remove the size component from a multivariate data set of measured distances 

(specimens in rows, variables in columns). Three methods are available. 

• Isometric Burnaby’s method projects the set of measured distances onto a space orthogonal 
to the first principal component. Burnaby's method may (or may not!) remove isometric size 
from the data, for further "size-free" data analysis. Note that the implementation in PAST 
does not center the data within groups - it assumes that all specimens (rows) belong to one 
group.  

• Allometric Burnaby’s method will log-transform the data prior to projection, thus conceivably 
removing also allometric size-dependent shape variation from the data.  

• Allometric vs. standard estimates allometric coefficients with respect to a standard 
(reference) measurement L such as overall length (Elliott et al. 1995). This standard variable 
should be placed in the first column. Each additional column is regressed onto the first 
column after log-transformation, giving a slope (allometric coefficient) b for that variable. An 
adjusted measurement is then computed from the original value M as 

b

adj
L

L
MM 








=  

Reference 

Elliott, N.G., K. Haskard & J.A. Koslow 1995. Morphometric analysis of orange roughy (Hoplostethus 
atlanticus) off the continental slope of southern Australia. Journal of Fish Biology 46:202-220. 

Landmarks, Procrustes fitting 

Transforms your measured point coordinates to Procrustes coordinates. There is also a menu choice 
for Bookstein coordinates. Specimens go in different rows and landmarks along each row. If you have 
three specimens with four landmarks in 2D, your data should look as follows:  

x1 y1 x2 y2 x3 y3 x4 y4 

x1 y1 x2 y2 x3 y3 x4 y4 

x1 y1 x2 y2 x3 y3 x4 y4 

For 3D the data will be similar, but with additional columns for z.  

Landmark data in this format could be analyzed directly with the multivariate methods in PAST, but it 
is recommended to standardize to Procrustes coordinates by removing position, size and rotation. A 
further transformation to Procrustes residuals (approximate tangent space coordinates) is achieved 
by selecting 'Subtract mean' in the Edit menu. You must convert to Procrustes coordinates first, then 
to Procrustes residuals. 

The “Rotate to major axis” option places the result into a standard orientation for convenience. 
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The “Keep size” option adds a final step where the shapes are scaled back to their original centroid 
sizes. 

The “Allow mirroring” (reflection) selection is only available for 2D. For 3D, this option is always on. 
Note that the default in the procGPA function in R is “off”, while in MorphoJ it is “on”. It will usually 
not make any difference, as reflection will only be optimal for data sets with very large variance. 

A thorough description of Procrustes and tangent space coordinates is given by Dryden & Mardia 
(1998). The algorithms for Procrustes fitting are from Rohlf & Slice (1990) (2D) and Dryden & Mardia 
(1998) (3D). It should be noted that for 2D, the iterative algorithm of Rohlf & Slice (1990) often gives 
slightly different results from the direct algorithm of Dryden & Mardia (1998). Past uses the former in 
order to follow the “industry standard”. 

Missing data is supported but only by column average substitution, which is perhaps not very 
meaningful. 

References 

Dryden, I.L. & K.V. Mardia 1998. Statistical Shape Analysis. Wiley. 

Rohlf, F.J. & Slice, D. 1990. Extensions of the Procrustes method for the optimal superimposition of 
landmarks. Systematic Zoology 39:40-59. 

Landmarks, Bookstein fitting 

Bookstein fitting has a similar function as Procrustes fitting, but simply standardizes size, rotation and 
scale by forcing the two first landmarks onto the coordinates (0,0) and (1,0). It is not in common use 
today. Bookstein fitting is only implemented for 2D. 

Project to tangent space (not yet in Past 4) 

After Procrustes or Bookstein fitting, some statistical procedures are ideally carried out on tangent 
space projected coordinates (usually it doesn’t make any difference, but don’t quote us on that!). 
With d the number of dimensions and p the number of landmarks, the projection is 

( )ccdp XXIXX
t−= . 

Here, X is the nxdp matrix of n specimens, X’ is the transformed matrix, I the dpxdp identity matrix, 
and Xc the mean (consensus) configuration as a dp-element row vector. 

Remove size from landmarks (not yet in Past 4) 
The 'Remove size from landmarks' option in the Transform menu allows you to remove size by 

dividing all coordinate values by the centroid size for each specimen (Procrustes coordinates are also 

normalized with respect to size). 

See Dryden & Mardia (1998), p. 23-26. 

Reference 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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Dryden, I.L. & K.V. Mardia 1998. Statistical Shape Analysis. Wiley. 

Transform landmarks 

Allows rotation of the point cloud in steps of 90 degrees, and top-bottom or left-right flipping 
(mirroring), mainly for plotting convenience. The mirror operation may be useful for reducing a 
bilaterally symmetric landmark data, by Procrustes fitting the left half to a mirrored version of the 
right half (and optionally averaging the two). 

Only for 2D coordinates. 

Regular interpolation 

Interpolates an irregularly sampled time series or transect (possibly multivariate) into a regular 
spacing, as required by many methods for time series analysis. The x values should be in the first 
selected column. These will be replaced by a regularly increasing series. All additional selected 
columns will be interpolated correspondingly. The perils of interpolation should be kept in mind. 

You can either specify the total number of interpolated points, or the new point spacing. Four 
interpolation methods are available. The antialiasing interpolation uses a 50-point sinc (FIR) filter 
with a Hamming window, low-pass filtering at half the new sampling frequency (averaged for uneven 
sampling) to reduce aliasing when downsampling. 

Evaluate expression  

This powerful feature allows flexible mathematical operations on the selected array of data. Each 
selected cell is evaluated, and the result replaces the previous contents. A mathematical expression 
must be entered, which can include any of the operators +, -, *, /, ^ (power), and mod (modulo). Also 
supported are brackets (), and the functions abs, atan, asin, cos, gtzer (greater than zero; 1 if x>0, 0 if 
x<=0), sin, exp, ln, sqrt, sqr, round, tan, and trunc.  

The following values are also defined:  

• x (the contents of the current cell)  
• l (the cell to the left if it exists, otherwise 0)  
• r (the cell to the right)  
• u (the cell above, or up)  
• d (the cell below, or down)  
• mean (the mean value of the current column)  
• median (the median of the current column) 
• min (the minimum value)  
• max (the maximum value)  
• n (the number of cells in the column)  
• i (the row index)  
• j (the column index)  
• random (uniform random number from 0 to 1)  
• normal (Gaussian random number with mean 0 and variance 1).  
• integral (running sum of the current column)  
• stdev (standard deviation of the current column)  
• iqr (interquartile range of the column) 
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• sum (total sum of the current column) 
• pi 

In addition, other columns can be referred to using the column name preceded by '%', for example 
%A.  

Examples:  

sqrt(x) Replaces all numbers with their square roots 

(x-mean)/stdev Mean and standard deviation normalization, column-wise 

x-0.5*(max+min) Centers the values around zero 

(u+x+d)/3 Three-point moving average smoothing 

x-u First-order difference 

I 
Fills the column with the row numbers (requires non-empty cells, such as all 
zeros) 

sin(2*3.14159*i/n) 
Generates one period of a sine function down a column (requires non-empty 
cells) 

5*normal+10 
Random number from a normal distribution, with mean of 10 and standard 
deviation of 5. 

Missing values supported.  
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Plot menu 

Graph  
Plots one or more columns as separate graphs. You can also use a group column. It is also possible to 

show each row, instead of each column, as a separate graph, with the “Plot rows” option. The x 

coordinates are set automatically to 1,2,3,... 

 

There are six plot styles available: Line, points, line with points, bars, steps and stems (vertical lines). 

The 'Row labels' option sets the x axis labels to the appropriate row names. 

The “Log Y” option log-transforms the values to base 10. For values <=0, the log value is set to 0. 

The sequence can be smoothed with a 3-point moving average. 

Missing values are disregarded. 
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XY graph 

Plots one or more pairs of columns containing x/y coordinate pairs. The 'log Y' option log-transforms 

your Y values (zero or negative values are set to 0). The curve can also be smoothed using 3-point 

moving average. 

95% concentration ellipses can be plotted in most scatter plots in PAST, such as scores for PCA, CA, 

DCA, PCO and NMDS. The calculation of these ellipses assumes bivariate normal distribution. They 

estimate a region where 95% of population points are expected to fall, i.e. they are not confidence 

regions for the mean. 

Convex hulls can also be drawn in the scatter plots, in order to show the areas occupied by points of 

different groups. The convex hull is the smallest convex polygon containing all points.  

The minimal spanning tree is the set of lines with minimal total length, connecting all points. In the 

XY graph module, Euclidean lengths in 2D are used.  

Points with missing values in X and/or Y are disregarded. 
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XY graph with error bars  

As XY graph, but expects four columns (or a multiple), with x, y, x error and y error values. Symmetric 

error bars are drawn around each point, with half-width as specified. If an error value is set to zero or 

missing, the corresponding error bar is not drawn. 

Points with missing values in X and/or Y are disregarded. 
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Histogram  

Plots histograms (frequency distributions) for one or more columns. You can also use a group 

column. The number of bins is by default set to an "optimal" number (the zero-stage rule of Wand 

1997), with bin width 

   ( ) 31349.1s,min49.3 −= nIQh  

where s is the sample standard deviation and IQ the interquartile range. The number of bins can be 

changed by the user. When two columns are selected, they can be plotted as a bihistogram, i.e. 

“mirror image” histograms which are easily compared. 

The "Fit normal" option draws a graph with a fitted normal distribution (Parametric estimation, not 

Least Squares).  

Kernel Density Estimation is a smooth estimator of the histogram. PAST uses a Gaussian kernel with 

range according to the rule given by Silverman (1986): 

( ) 5134.1,min9.0 −= nIQsh .  

Missing values are deleted. 

 

 

References 

Silverman, B.W. 1986. Density estimation for statistics and data analysis. Chapman & Hall. 

Wand, M.P. 1997. Data-based choice of histogram bin width. American Statistician 51:59-64. 
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Bar chart/box plot  

Bar plot, box plot, mean-and-whisker plot, jitter plot or violon plot for one or several columns 

(samples) of univariate data. Alternatively, you can use a group column. If you include two group 

columns, you get a grouped bar/box plot with the first group column specifying the group of bars, 

and the second the bar within the group. There is also an option for using the first value in each 

column for setting the x position of the column in the plot. Missing values are disregarded.  

Bar chart 

For each sample, the mean value is shown by a bar. In addition, “whiskers” can optionally be shown. 

The whisker interval can represent a one-sigma or a 95% confidence interval (1.96 sigma) for the 

estimate of the mean (based on the standard error), or a one-sigma or 95% concentration interval 

(based on the standard deviation). 

Box plot 

For each sample, the 25-75 percent quartiles are drawn using a box. The median is shown with a 

horizontal line inside the box. The minimal and maximal values are shown with short horizontal lines 

("whiskers").  

If the "Outliers" box is ticked, another box plot convention is used. The whiskers are drawn from the 

top of the box up to the largest data point less than 1.5 times the box height from the box (the 

"upper inner fence"), and similarly below the box. Values outside the inner fences are shown as 

circles, values further than 3 times the box height from the box (the "outer fences") are shown as 

stars. 

The “Notches” option visualizes an approximate 95% confidence interval for the median. 

The quartile methods (rounding or interpolation) are described under “Percentiles” below. 

Mean and whisker plot 

Similar to bar chart, but without the bar, showing the mean as a point with whiskers for the standard 

error, standard deviation or 95% intervals. 

Jitter plot 

Each value is plotted as a dot. To show overlapping points more clearly, they can be displaced using a 

random “jitter” value controlled by a slider. 

Violin plot 

The violin plot shows a kernel density plot (“continuous histogram”) for each sample. The plot ranges 

from the minimum to the maximum value. A box plot (described above) can optionally be shown on 

top of the violin. 
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Bar chart      Box plot 

 

 

Violin plot with box plot 

  



30 

 

Pie chart 
Plots a pie chart or doughnut chart from a single column of data, or up to five columns for multiple 

charts. A sector can be emphasized by “explosion”: 

 

 

Missing values are disregarded. 
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Stacked chart 
One or more rows of data can be plotted as stacked bar chart or stacked area chart. Each bar 

represents one row, and the data along columns are plotted cumulatively. The ‘Percentage’ option 

converts to percentages of the row total, so that all bars will be of equal height (100%). 

Missing data are treated as zero. 

 

 

 

Stacked area chart with percentage option, axes flipped 
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Percentiles 

For each percentile p, plots the value y such that p percent of the points are smaller than y. Multiple 

plots can be produced using several data columns or a group column. Two popular methods are 

included. For a percentile p, the rank is computed according to k=p(n+1)/100, and the value that 

corresponds to that rank taken. In the rounding method, k is rounded to the nearest integer, while in 

the interpolation method, non-integer ranks are handled by linear interpolation between the two 

nearest ranks. 

Missing values are disregarded. 
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Normal probability plot  

Plots a normal probability (normal QQ) plot for one or more columns of data. A normal distribution 

will plot on a straight line. For comparison, an RMA regression line is given, together with the 

Probability Plot Correlation Coefficient. 

 

(three groups were given in this example) 

Missing values are disregarded. 

The normal order statistic medians are computed as N(i) = G(U(i)), where G is the inverse of the 

cumulative normal distribution function and U are the uniform order statistic medians: 
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Ternary  

Ternary plot for three columns of data, normally containing proportions of compositions. A color 

map of point density (computed with a kernel density method) can also be shown.  If a fourth column 

is included, it will be shown using either a bubble representation or as a color/grayscale map. 

 

 

 

Rows with missing value(s) in any column are disregarded. When using the color map option, rows 

with only the fourth variable missing are included in the plot but do not contribute to the map. 
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Bubble plot  

Plotting 3D data (three columns) by showing the third axis as size of disks. Negative values are not 

shown. Select "Subtract min" to subtract the smallest third axis value from all values - this will force 

the data to be positive. The "Size" slider scales the bubbles relative to unit radius on the x axis scale.  

 

Rows with missing value(s) in any column are disregarded. 

 



36 

 

Matrix plot  

Two-dimensional plot of the data matrix, using a grayscale with white for lowest value, black for 

highest, or a colour scale. Includes contouring. Use to get an overview over a large data matrix. 

Missing values are plotted as blanks (allowing holes and non-square boundaries). 
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Mosaic plot 
Shows proportions in a two-way or three-way contingency table as areas of rectangles. A two-way 

table can be given as a simple data matrix or with two group columns and a single data column (there 

must be exactly one row for each combination of group levels). Column widths will reflect column 

totals, and row heights will reflect row totals. The interpretation of a three-way contingency table 

(specified with three group columns) is a little more complicated – see below for the standard 

“Titanic” example, described on e.g. the Wikipedia page about mosaic plots. 
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Venn diagram 
Plotting of Venn diagrams for two or three sets, with a number of options. Circles can be plotted with 

equal sizes, or with sizes and overlaps proportional to the number of members. 

Two sets 

The input data for two sets A and B can be given as a 2x2 contingency table on this form: 

A and B  A, not B 

B, not A  Not A, not B 

 

The “not A, not B” value is only used when the “Show none” box is ticked. 

Alternatively, the values can be given in a single column with 3 or 4 rows as follows: 

A, not B 

B, not A 

A and B 

Not A, not B (this value is optional) 

 

Three sets 

The input data for three sets A, B and C are given in a single column with 7 or 8 rows: 

A, not B, not C (ABC=100) 

B, not A, not C (ABC=010) 

A and B, not C (ABC=110) 

C, not A, not B (ABC=001) 

A and C, not B (ABC=101) 

B and C, not A (ABC=011) 

A and B and C (ABC=111) 

not A, not B, not C (ABC=000) (this value is optional) 

 

Example data: 

20 

10 

12 

8 

9 

4 

3 

80 
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Plotting a fully size-proportional 3-set Venn diagram with circles is not generally possible. Past 

prioritizes the total sizes of circles and the pairwise overlapping regions. The algorithm is inspired by 

the “matplotlib-venn” Python code by Konstantin Tretyakov. 
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Radar chart 
For visualizing multivariate data. One radar chart (polygon) will be plotted for each row in the data. 

In the example below, the data consisted of two rows (P34 and P26) and six columns (variables). The 

grid lines can be polygons (radar chart) or circles (polar chart). 

The module will also accept a single column of data. 

Another use of this module is for visualizing circular or cyclic data such as animal activity through 24 

hours or sunlight through 12 months. 

Missing values are treated as zero. 
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Polar plot 
This plot accepts polar coordinates, with angles in degrees in the first column and radius values in the 

second column. By default, the angles are assumed to go counterclockwise from east (see figure). By 

ticking “Geographical convention” the angles are assumed to go clockwise from north. 
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Vector plot 
Accepts four columns with vector start points (x and y) and vector x and y components. An optional 

fifth column can specify line thickness. 

There is also an option to allow the vector components (columns 3 and 4) to be specified in polar 

coordinates, as angles in degrees (counter-clockwise from East) and lengths. 

 

(In this example, the colors were specified by the row colors in the spreadsheet). 
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Network plot 
This module plots networks (graphs), with nodes (rows in the spreadsheet) connected by edges. You 

can specify the network with an adjacency matrix in the spreadsheet (only the lower triangle needs 

to be given). In this matrix, a 1 in row i, column j implies an edge from node i to node j. All other cells 

should be zero. For this type of input data, you must select “User-defined similarity” as the similarity 

index. You can also specify similarities other than 1 for variable edge thickness (see below). 

Alternatively, you can plot a network showing similarities between rows, using your raw data matrix 

and any similarity or distance measure you choose. You can then choose a similarity cutoff (in 

percent) to control the number of edges included. Zero percent cutoff will give a fully connected 

(complete) network with edges between all pairs of nodes; fifty percent will show only edges 

between nodes that are more than 50% similar. 

The “Scale nodes by no. edges” option will set the diameter of nodes proportional to the number of 

edges connected to it. The “Scale edges by similarity” will set the thickness of edges proportional to 

the similarity. 

 

The nodes can be arranged in a circle, or they can be positioned with the Fruchterman-Reingold 

algorithm (1991). Using a random starting position, this algorithm will produce a new layout each 

time, so click “Redraw” a few times until you get a pleasing result. 

The “Bipartite linear” option plots a bipartite graph with the data rows shown as graph nodes in one 

vertical column and the data columns as nodes in another column. A non-zero value in a data cell will 

produce an edge from the corresponding row node to the column node. This format is typically used 

for ecological data matrices with samples in rows and taxa in columns. 

Reference 

Fruchterman, T. M. J. & Reingold, E. M. 1991. Graph drawing by force-directed placement. Software: 

Practice and Experience 21:1129–1164. 
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3D scatter/bubble/line plot 
Requires three or four columns of data. For three columns, the data are plotted as fixed-size spheres 

(or other symbols as given in the spreadsheet) with the given xyz coordinates. An optional fourth 

column is shown as sizes of bubbles. The coordinate system is right-handed, with the z axis vertical 

(positive up). Sticks can be added to emphasize the positions in the xy plane. Select the ‘Lines’ box to 

draw lines between the points. 
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3D surface plot  

Three-dimensional landscape plot of a data matrix of elevation values. Colors are assigned according 

to height, and/or the surface can be gray-shaded using a lighting model. Vertical exaggeration is 

adjustable. Missing values are replaced with the average. The data in the example below are the 

same as for the matrix plot above. 

 

 

  



46 

 

3D parametric surface plot 
Plots a 3D parametric surface given as a matrix of xyz triples. Such a matrix will usually be generated 

by a script. Consider for example the following Past script, writing a parabolic helicoid into the 

spreadsheet: 

tablesize(10, 400); 

for i:=1 to 100 do begin 

phi:=4*2*pi*(i-1)/100; 

z:=0.2*phi*phi; 

for j:=1 to 8 do begin 

r:=phi*(j-1)/7; 

x:=r*cos(phi); 

y:=r*sin(phi); 

tableout(j-1, (i-1)*3, x); 

tableout(j-1, (i-1)*3+1, y); 

tableout(j-1, (i-1)*3+2, z); 

end; 

end;  
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Univariate menu 

Summary statistics 
This function computes descriptive statistics for one or more samples (columns) of univariate data. 
The samples can be given in one or more separate columns or with a single data column and a group 
column. Each sample must have at least 3 values.  The columns can have different numbers of values. 

 

 

The following numbers are shown for each sample: 

N:  The number of values n in the sample 

Min:  The minimum value 

Max:  The maximum value 

Mean:  The estimate of the mean, calculated as  

n

x
x

i
=

 

Std. error: The standard error of the estimate of the mean, calculated as  

n

s
SEx =

 

  where s is the estimate of the standard deviation (see below). 

Variance: The sample variance, calculated as 
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−
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Stand. dev.: The sample standard deviation, calculated as 

 
( ) −

−
=

2

1

1
xx

n
s i

. 

Median: The median of the sample. For n odd, the given value such that there are equally 
many values above and below. For n even, the average of the two central values. 

25 prcntil: The 25th percentile, i.e. the given value such that 25% of the sample is below, 75% 
above. The “interpolation” method is used (see Percentile plot above). 

75 prcntil: The 75th percentile, i.e. the given value such that 75% of the sample is below, 25% 
above.  The “interpolation” method is used (see Percentile plot above). 

Mode:  The most common value. If there is no single most common value (or if all values are 
different), the mode is reported as “NA” (not available) 

Skewness: The sample skewness, zero for a normal distribution, positive for a tail to the right. 
Calculated as 
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Note there are several versions of this around – Past uses the same equation as SPSS 
and Excel. Slightly different results may occur using other programs, especially for 
small sample sizes. 

Kurtosis: The sample kurtosis, zero for a normal distribution. Calculated as 
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Again, Past uses the same equation as SPSS and Excel. 

Geom. mean: The geometric mean, calculated as ( ) n

nxxx
/1

21  . Logarithms are used internally. 

Coeff.var: Coefficient of variation, or ratio of standard deviation to the mean, in percent: 

( )
100

1

1

100

2



−
−

==


x

xx
n

x

s
CV

i

 

Bootstrapping 

Selecting bootstrapping will compute lower and upper limits for 95% confidence intervals, using the 
specified number of bootstrap replicates. Confidence intervals for the min and max values are not 
given, because bootstrapping is known to not work well for these statistics. Three different bootstrap 
methods are available (cf. Davison and Hinkley 1997): 
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Simple (basic): 

The statistic estimated from the original sample is t. The simulated estimates from R bootstrap 

replicates are t1
*, t2

*, …,  tR
*. For a 95% CI, we set the one-tailed error =0.025. The simple (or basic) 

bootstrapped CI is then 

( )( ) ( ) *

1

*

11 2,2  +−+ −− RR tttt . 

To ensure integer-valued subscripts, values for R such as 999, 9999 or 99999 are convenient. 

Percentile: 

An even simpler estimate: 

 ( ) ( )( ) *

11

*

1 ,  −++ RR tt . 

BCa (adjusted percentile method): 

This is a complex method, but somewhat more accurate than the simple and percentile bootstrap. 
Estimate a bias correction factor (called z in some texts): 
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where  is the cumulative normal function and || is the number of elements in the set. Note we use 
strictly less than, unlike some sources. Then calculate a skewness correction factor: 
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where t-i is the statistic computed with value i removed (jackknifed), and −t  is the mean of the 

jackknifed values. With these values for w and z, compute adjusted CI endpoint values 
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where 1.96 is the approximate quantile for the normal distribution corresponding to a 95% CI (the 
actual value used is 1.959964). The bootstrapped confidence interval is 

( ) ( ) *

1

*

1 21
, aRaR tt ++ . 

No interpolation is used if the index is not an integer. 

Missing data: Supported by deletion. 
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One-sample tests 
Tests for whether a single sample (single column of data) comes from a population with a given, 

often hypothetical, mean or median. For example, are a number of oxygen isotope values from sea 

shells (single sample) the same as average seawater composition (given mean)? The given test value 

must be typed in. In addition, single-case tests are used to test whether a single value comes from 

the same population as the given sample. 

One-sample t test for given mean µ0 (parametric) 

Sample mean and standard deviation are estimated as described above under Univariate statistics. 

The 95% confidence interval for the difference in means is based on the standard error for the 

estimate of the mean, and the t distribution. Normal distribution is assumed. With s the estimate of 

the sample standard deviation, the confidence interval is 

[|𝑥̅ − 𝜇0| − 𝑡(𝛼 2⁄ ,𝑛−1)

𝑠

√𝑛
, |𝑥̅ − 𝜇0| + 𝑡(𝛼 2⁄ ,𝑛−1)

𝑠

√𝑛
 ] 

Here, t has n-1 degrees of freedom, and 1-α = 0.95 for a 95% confidence interval. The t test has null 

hypothesis 

H0: The sample is taken from a population with mean µ0.  

The test statistic is 

𝑡 =
𝑥̅ − 𝜇0

𝑠

√𝑛

 

One-sample Wilcoxon signed-rank test for given median M (nonparametric) 

The one-sample Wilcoxon test has null hypothesis 

H0: The sample is taken from a population with median M. 

All values equal to M are first removed by the program. Then the absolute values of the differences 

|di| are ranked (Ri), with mean ranks assigned for ties. The sum of ranks for pairs where di is positive 

is W+. The sum of ranks for pairs where di is negative is W-. The reported test statistic is 

W = max(W+, W-) 

(note that there are several other, equivalent versions of this test, reporting other statistics). 

For large n (say n>10), the large-sample approximation to p can be used. This depends on the normal 

distribution of the test statistic W: 

𝐸(𝑊) =
𝑛(𝑛 + 1)

4
 

Var(𝑊) =
𝑛(𝑛 + 1)(2𝑛 + 1)

24
−

∑ 𝑓𝑔
3 − 𝑓𝑔𝑔
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The last term is a correction for ties, where fg is the number of elements in tie g. The resulting z is 

reported, together with the p value. 

For n<13, an exact p value is computed, by complete enumeration of all possible reassignments 

(there are 2n of them, e.g., 4096 for n=12). This is the preferred p value, if available. 

Single-case tests 

The single-case tests have null hypothesis 

H0: The given single value y is taken from the same population as the given sample. 

Normal distribution is assumed. A simple z test is often used for this purpose, and is also provided by 

Past. However, the z test is inaccurate because it assumes that the mean and standard deviations are 

given exactly, whereas in reality, they are estimated from the sample. Therefore, Past also provides a 

modified t test (Sokal & Rohlf 1995; Crawford & Howell 1998): 

𝑡 =
𝑦 − 𝑥̅

𝑠√
𝑛 + 1

𝑛

 

with s the sample standard deviation and n-1 degrees of freedom. 

Binomial proportion 

Expects binary data (0 or non-zero) in the given sample. The proportion of non-zeroes in the sample 

is compared with the given proportion, and confidence intervals are also reported. 

The same test is provided in the Single proportion module, but there a binary data column is not 

required, only the observed proportion. 

References 

Crawford, J.R. & Howell, D.C. 1998. Comparing an individual’s test score against norms derived from 

small samples. The Clinical Neuropsychologist 12:482-486. 

Sokal, R.R. & Rohlf, J.F. 1995. Biometry. W.H. Freeman, San Francisco. 
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Two-sample tests 
A number of classical statistics and tests for comparing two univariate samples, as given in two 
columns. It is also possible to specify the two groups using a single column of values and an 
additional Group column. Missing data are disregarded. 

t test and related tests for equal means 

 

  

 

Sample statistics 

Means and variances are estimated as described above under Univariate statistics. The 95% 
confidence interval for the mean is based on the standard error for the estimate of the mean, and 
the t distribution. Normal distribution is assumed. With s the estimate of the standard deviation, the 
confidence interval is 
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Here, t has n-1 degrees of freedom, and 1-α = 0.95 for a 95% confidence interval. 

The 95% confidence interval for the difference between the means accepts unequal sample sizes: 

( ) ( ) DdfDdf styxstyx ,2,2 ,  +−−−
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The confidence interval is computed for the larger mean minus the smaller, i.e. the center of the CI  

should always be positive. The confidence interval for the difference in means is also estimated by 

bootstrapping (simple bootstrap), with the given number of replicates (default 9999). 

t test 

The t test has null hypothesis 

H0: The two samples are taken from populations with equal means.  

The t test assumes normal distributions and equal variances. 

From the standard error sD of the difference of the means given above, the test statistic is 

Ds

yx
t

−
=

. 

Unequal variance t test 

The unequal variance t test is also known as the Welch test. It can be used as an alternative to the 
basic t test when variances are very different, although it can be argued that testing for difference in 
the means in this case is questionable. The test statistic is 
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Monte Carlo permutation test 

The permutation test for equality of means uses the absolute difference in means as test statistic. 
This is equivalent to using the t statistic. The permutation test is non-parametric with few 
assumptions, but the two samples are assumed to be equal in distribution if the null hypothesis is 
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true. The number of permutations can be set by the user. The power of the test is limited by the 
sample size – significance at the p<0.05 level can only be achieved for n>3 in each sample. 

Exact permutation test 

As the Monte Carlo permutation test, but all possible permutations are computed. Only available if 
the sum of the two sample sizes is less than 27. 

Bayes factor 

The Jeffrey-Zellner-Siow (JZS) Bayes Factor is reported in favour of the alternative, i.e. it quantifies 
the evidence for the hypothesis of unequal means. It is calculated according to Rouder et al. (2009), 

BF10 =
∫ (1 + 𝑁𝑔𝑟2)−1 2⁄ (1 +

𝑡2

𝜈(1 + 𝑁𝑔𝑟2)
)
−(𝜈+1) 2⁄

(2𝜋)−1 2⁄ 𝑔−3 2⁄ 𝑒−1 2𝑔⁄ 𝑑𝑔
∞

0

(1 +
𝑡2

𝜈
)
−(𝜈+1) 2⁄

 

where N = n1n2 / (n1+n2) and ν = n1 + n2 – 2 (degrees of freedom). The t value is the usual t statistic, 
and the r value is the Cauchy scale factor, fixed at √2/2 = 0.707. The integral is approximated 
numerically. 

A BF value larger than 3 may be taken as “substantial” evidence for unequal means, but this is 
relative to the assumed “uninformative” prior (Rouder et al. 2009). Likewise, a BF value smaller than 
1/3 may be taken as substantial evidence for equal means, but this rarely happens unless N is very 
large. BF>10 is reported as “strong evidence”; BF>30 as “very strong”; and BF>100 as “decisive 
evidence”. 

Cohen’s d 

Cohen’s d (Cohen 1988) is a measure of effect size. Past calculates the classical version without bias 
correction (this usually does not matter): 

𝑑 =
𝑥̅ − 𝑦̅

𝑠
 

where s is the pooled standard deviation 

𝑠 = √
(𝑛1 − 1)Var(𝑥) + (𝑛2 − 1)Var(𝑦)

𝑛1 + 𝑛2 − 2
 

The textual interpretation of the value for Cohen’s d follows Sawilowsky (2009). 

References 

Cohen, J. 1988. Statistical power analysis for the behavioral sciences (2nd ed.). Academic Press, NY 

Rouder, J.N., Speckman, P.L., Sun, D., Morey, R.D. & Iverson, G. 2009. Bayesian t tests for accepting 
and rejecting the null hypothesis. Psychonomic Bulletin and Revue 16:225–237. 

Sawilowsky, S. 2009. New effect size rules of thumb. Journal of Modern Applied Statistical Methods 
8:467–474. 
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F test for equal variances 

 

  

The F test has null hypothesis 

H0: The two samples are taken from populations with equal variance. 

Normal distribution is assumed. The F statistic is the ratio of the larger variance to the smaller. The 
significance is two-tailed, with n1 and n2 degrees of freedom. 

Monte Carlo and exact permutation tests on the F statistic are computed as for the t test above. 

 

Mann-Whitney test for “equal medians” 

The two-tailed (Wilcoxon) Mann-Whitney U test can be used to test whether the medians of two 
independent samples are different. It is a non-parametric test and does not assume normal 
distribution. The null hypothesis is 

H0: For randomly selected values x and y from the two populations, the probability of x>y is 
equal to the probability of y>x. 

If the distributions are equal except for location, the null hypothesis can be interpreted as equal 
medians. 
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For each value in sample 1, count the number of values in sample 2 that are smaller than it (ties 
count 0.5). The total of these counts is the test statistic U (sometimes called T). If the value of U is 
smaller when reversing the order of samples, this value is chosen instead (it can be shown that 
U1+U2=n1n2). 

The program computes an asymptotic approximation to p based on the normal distribution (two-
tailed), which is only valid for large n. It includes a continuity correction and a correction for ties: 
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where n=n1+n2 and fg is the number of elements in tie g. 

A Monte Carlo value based on the given number of random permutations (default 9999) is also given 
– the purpose of this is mainly as a control on the asymptotic value. 

For n1+n2<=30 (e.g. 15 values in each group), an exact p value is given, based on all possible group 
assignments. If available, always use this exact value. For larger samples, the asymptotic 
approximation is quite accurate. 

 

Mood’s median test for equal medians 

The median test is an alternative to the Mann-Whitney test for equal medians. The median test has 
low power, and the Mann-Whitney test is therefore usually preferable. However, there may be cases 
with strong outliers where the Mood’s test may perform better. 
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The test simply counts the number of values in each sample that are above or below the pooled 
median, producing a 2x2 contingency table that is tested with a standard chi-squared test with two 
degrees of freedom, without Yate’s correction. 
 

Kolmogorov-Smirnov test for equal distributions 

The Kolmogorov-Smirnov test is a nonparametric test for overall equal distribution of two univariate 
samples. In other words, it does not test specifically for equality of mean, variance or any other 
parameter. The null hypothesis is H0: The two samples are taken from populations with equal 
distribution. 

 

 

In the version of the test provided by Past, both columns must represent samples. You cannot test a 
sample against a theoretical distribution (one-sample test). 

The test statistic is the maximum absolute difference between the two empirical cumulative 
distribution functions: 

( ) ( )xSxSD NN
x 21

max −=
 

The algorithm is based on Press et al. (1992), with significance estimated  after Stephens (1970). 
Define the function 
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With Ne = N1N2/(N1+N2), the significance is computed as 

 ( )DNNQp eeKS 11.012.0 ++=
. 
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The permutation test uses 10,000 permutations. Use the permutation p value for N<30 (or generally). 

References 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. 1992. Numerical Recipes in C. 2nd 
edition. Cambridge University Press. 

Stephens, M.A. 1970. Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics 
without extensive tables.  Journal of the Royal Statistical Society, Series B 32:115-122. 

 

Anderson-Darling test for equal distributions 

The Anderson-Darling test is a nonparametric test for overall equal distribution of two univariate 
samples. It generally has higher power than the Kolmogorov-Smirnov test. 

With two samples x1 .. xn and y1 .. ym, the pooled sample size is N = n+m. The test statistic A2
N can be 

computed according to Pettitt (1976): 

𝐴𝑁
2 =

1

𝑚𝑛
∑

(𝑀𝑖𝑁 − 𝑛𝑖)2

𝑖(𝑁 − 𝑖)

𝑁−1

𝑖=1

 

where Mi is the number of x’s less than or equal to the ith smallest in the pooled sample. Past uses a 
slightly more complicated version of this equation, with better performance in the presence of ties 
(Scholz & Stephens 1987, eq. 6). 

This statistic is transformed to a statistic called Z according to Scholz & Stephens (1987). For our case 
with k=2 samples, compute the variance of the statistic as follows: 
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𝑎 = 2(4𝑔 − 6) + (10 − 6𝑔)𝐻 − 4𝑔 + 6 = 4𝑔 − 6 + (10 − 6𝑔)𝐻 

𝑏 = 4(2𝑔 − 4) + 16ℎ + (2𝑔 − 14ℎ − 4)𝐻 − 8ℎ + 4𝑔 − 6 = 12𝑔 + 8ℎ − 22 + (2𝑔 − 14ℎ − 4)𝐻 

𝑐 = 4(6ℎ + 2𝑔 − 2) + 2(4ℎ − 4𝑔 + 6) + (2ℎ − 6)𝐻 + 4ℎ = 36ℎ + 4 + (2ℎ − 6)𝐻 

𝑑 = 4(2ℎ + 6) − 8ℎ = 6 

𝜎𝑁
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𝑎𝑁3 + 𝑏𝑁2 + 𝑐𝑁 + 𝑑
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The p value is computed by interpolation and extrapolation in Table 1 (m=1) of Scholz & Stephens 
(1987), using a curve fit to the von Bertalanffy model. The approximation is fairly accurate for 
p≤0.25.For p>0.25, the p values are estimated using a polynomial fit to values obtained by 
permutation. A p value based on Monte Carlo permutation with N=999 is also provided. 

References 

Pettitt, A.N. 1976. A two-sample Anderson-Darling rank statistic. Biometrika 63:161-168. 

Scholz, F.W. & Stephens, M.A. 1987. K-sample Anderson–Darling tests. Journal of the American 
Statistical Association 82:918–924. 

 

Epps-Singleton test for equal distributions 

The Epps-Singleton test (Epps & Singleton 1986; Goerg & Kaiser 2009) is a nonparametric test for 
overall equal distribution of two univariate samples. It is typically more powerful than the 
Kolmogorov-Smirnov test, and unlike the Kolmogorov-Smirnov it can be used also for non-continuous 
(i.e. ordinal) data. The null hypothesis is H0: The two samples are taken from populations with equal 
distribution. 

The mathematics behind the Epps-Singleton test are complicated. The test is based on the Fourier 
transform of the empirical distribution function, called the empirical characteristic function (ECF). 
The ECF is generated for each sample and sampled at two points (t1=0.4 and t2=0.8, standardized for 
the pooled semi-interquartile range). The test statistic W2 is based on the difference between the 
two sampled ECFs, standardized by their covariance matrices. A small-sample correction to W2 is 
applied if both sample sizes are less than 25. The p value is based on the chi-squared distribution. For 
details, see Epps & Singleton (1986) and Goerg & Kaiser (2009). 

References 

Epps, T.W. & Singleton, K.J. 1986. An omnibus test for the two-sample problem using the empirical 
characteristic function. Journal of Statistical Computation and Simulation 26:177–203. 

Goerg, S.J. & Kaiser, J. 2009. Nonparametric testing of distributions – the Epps-Singleton two-sample 
test using the empirical characteristic function. The Stata Journal 9:454-465. 
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Coefficient of variation (Fligner-Kileen test) 

This module tests for equal coefficient of variation in two samples. 

 

The coefficient of variation (or relative variation) is defined as the ratio of standard deviation to the 
mean in percent, and is computed as: 
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The 95% confidence intervals are estimated by bootstrapping (simple bootstrap), with the given 
number of replicates (default 9999). 

The null hypothesis if the statistical test is: 

H0: The samples were taken from populations with the same coefficient of variation. 

If the given p(normal) is less than 0.05, equal coefficient of variation can be rejected.  Donnelly & 
Kramer (1999) describe the coefficient of variation and review a number of statistical tests for the 
comparison of two samples. They recommend the Fligner-Killeen test (Fligner & Killeen 1976), as 
implemented in Past. This test is both powerful and is relatively insensitive to distribution. The 
following statistics are reported: 

T: The Fligner-Killeen test statistic, which is a sum of transformed ranked positions of the 
smaller sample within the pooled sample (see Donnelly & Kramer 1999 for details). 

E(T): The expected value for T. 

z: The z statistic, based on T, Var(T) and E(T). Note this is a large-sample approximation. 
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p: The p(H0) value. Both the one-tailed and two-tailed values are given. For the alternative 
hypothesis of difference in either direction, the two-tailed value should be used. However, 
the Fligner-Killeen test has been used to compare variation within a sample of fossils with 
variation within a closely related modern species, to test for multiple fossil species (Donnelly 
& Kramer 1999). In this case the alternative hypothesis might be that CV is larger in the fossil 
population, if so then a one-tailed test can be used for increased power. 

The screenshot above reproduces the example of Donnelly & Kramer (1999), showing that the 
relative variation within Australopithecus afarensis is significantly larger than in Gorilla gorilla. This 
could indicate that A. afarensis represents several species. 

References 

Donnelly, S.M. & Kramer, A. 1999. Testing for multiple species in fossil samples: An evaluation and 
comparison of tests for equal relative variation. American Journal of Physical Anthropology 108:507-
529. 

Fligner, M.A. & Killeen, T.J. 1976. Distribution-free two sample tests for scale. Journal of the American 
Statistical Association 71:210-213. 

 

F and t tests from parameters 
Sometimes publications give not the data, but values for sample size, mean and variance for two 
samples. These can be entered manually using the ‘F and t from parameters’ option in the menu. This 
module does not use any data from the spreadsheet. 
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Two-sample paired tests (t, sign, Wilcoxon) 

Three statistical tests (one parametric, two non-parametric) for two samples (columns) of univariate 
data. The data points are paired, meaning that the two values in each row are associated. For 
example, the test could be the for length of the left vs. the right arm in a number of people, or the 
diversity in summer vs. winter at a number of sites. Controlling for a “nuisance factor” (person, site) 
in this way increases the power of the test. The null hypothesis is: 

H0: The mean (t test) or median (sign test, Wilcoxon test) of the difference is zero. 

All reported p values are two-tailed. 

 

 

t test 

Testing for mean difference equal to zero using the standard one-sample t test on the differences. 
With di = xi-yi , we have 
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, 
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. 

There are n-1 degrees of freedom. This test assumes normal distribution of the differences. 

The exact version of the test calculates all possible group reassignments within pairs. It is only 
computed for less than 26 pairs. 
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Bayesian factor 

The Jeffrey-Zellner-Siow (JZS) Bayes Factor is reported in favour of the alternative, i.e. it quantifies 
the evidence for the hypothesis of unequal means. For details, see the section on the (unpaired) two-
sample t test above. The same equation is used, but with N-1 degrees of freedom. 

 

Sign test 

The sign (binomial) test simply counts the number of cases n1 where xi>yi and n2 where yi>xi.The 
number max(n1, n2) is reported. The p value is exact, computed from the binomial distribution. The 
sign test may have lower power than the other paired tests, but makes few assumptions. 

 

Wilcoxon signed rank test 

A non-parametric rank test that does not assume normal distribution. The null hypothesis is no 
median shift (no difference). 

All rows with zero difference are first removed by the program. Then the absolute values of the 
differences |di| are ranked (Ri), with mean ranks assigned for ties. The sum of ranks for pairs where 
di is positive is W+. The sum of ranks for pairs where di is negative is W-. The reported test statistic is 

W = max(W+, W-) 

(note that there are several other, equivalent versions of this test, reporting other statistics). 

For large n (say n>10), the large-sample approximation to p can be used. This depends on the normal 
distribution of the test statistic W: 
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The last term is a correction for ties, where fg is the number of elements in tie g. The resulting z is 
reported, together with the p value. 

The Monte Carlo significance value is based on 99,999 random reassignments of values to columns, 
within each pair. This value will be practically identical to the exact p value. 

For n<23, an exact p value is computed, by complete enumeration of all possible reassignments 
(there are 2n of them, i.e. more than four million for n=22).  This is the preferred p value, if available. 

Missing data: Supported by deletion of the row. 
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Several-sample tests 
 

One-way ANOVA and Kruskal-Wallis tests for equality of means or medians between several 

univariate samples, given in separate columns. It is also possible to specify the groups using a single 

column of values and an additional Group column. Missing data are supported by deletion. 

One-way ANOVA 

One-way ANOVA (analysis of variance) is a statistical procedure for testing the null hypothesis that 

several univariate samples are taken from populations with the same mean. The samples are 

assumed to be close to normally distributed and have similar variances. If the sample sizes are equal, 

these two assumptions are not critical. If the assumptions are strongly violated, the nonparametric 

Kruskal-Wallis test should be used instead. 

 

  

 

ANOVA table 

The between-groups sum of squares is given by: 

( ) −=
g

Tgg xxn
2

bgSS

, 

where ng is the size of group g, and the means are group and total means. The between-groups sum 

of squares has an associated dfbg , the number of groups minus one. 

The within-groups sum of squares is 
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where the xi are those in group g. The within-groups sum of square has an associated dfwg, the total 

number of values minus the number of groups. 

The mean squares between and within groups are given by 
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Finally, the test statistic F is computed as 

wg

bg

MS

MS
=F

 

The p value is based on F with dfbg and dfwg degrees of freedom. 

Random effects (Model II) ANOVA 

For balanced, one-way ANOVA, the ANOVA table, F value and p value are the same for fixed-effects 

and random-effects ANOVA, so you can use the results for either type of ANOVA. If your design is of 

the random-effects type (i.e. the factor levels are taken at random from a larger population instead 

of being fixed by experiment), then you should also report the given variance due to random errors 

and the variance due to difference between groups (can become negative): 

𝑠2 = MSwg 

𝑠𝑔
2 =

MSbg − MSwg

𝑛
 

where n is the sample size for each group in the case of balanced design. For unbalanced design, set 

n to 

𝑛0 =
1

𝐺 − 1
(∑𝑛𝑖

𝐺

𝑖=1

−
∑𝑛𝑖

2

∑𝑛𝑖
) 

where G is the number of groups. The intraclass correlation coefficient ICC gives the proportion of 

variance due to group differences: 

𝐼𝐶𝐶 =
𝑠𝑔
2

𝑠𝑔
2 + 𝑠2
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Omega squared 

The omega squared is a measure of effect size, varying from 0 to 1: 

wgtotal

wgbgbg2

MSSS

MSdfSS

+

−
= . 

Levene's test 

Levene's test for homogeneity of variance (homoskedasticity), that is, whether variances are equal as 

assumed by ANOVA, is also given. Two versions of the test are included. The original Levene's test is 

based on means. This version has more power if the distributions are normal or at least symmetric. 

The version based on medians has less power but is more robust to non-normal distributions. Note 

that this test can be used also for only two samples, giving an alternative to the F test for two 

samples described above. 

 

Unequal-variance (Welch) ANOVA 

If Levene's test is significant, meaning that you have unequal variances, you can use the unequal-

variance (Welch) version of ANOVA, with the F, df and p values given. 

 

Bayes factor 

The Jeffrey-Zellner-Siow (JZS) Bayes Factor is reported in favour of the alternative, i.e. it quantifies 

the evidence for the hypothesis of unequal means. It is calculated according to Rouder et al. (2012). 

 

Effect size (confidence intervals fort the pairwise differences in means) 

This table gives 95% confidence intervals for the differences in group means. If a confidence interval 

does not include zero, the difference may be considered significant, and it is marked in pink. These 

are “multiple-t” or “simultaneous” confidence intervals, which are wider than the confidence 

intervals for each pairwise difference in isolation. For the two groups i and j, the confidence interval 

is 

(𝑥𝑖̅ − 𝑥𝑗̅) ± 𝑡𝛼 2𝑚⁄ √𝑀𝑆𝑤𝑔√
1

𝑛𝑖
+

1

𝑛𝑗
 

where tα/2m is the upper α/2m point of the t distribution with α=0.05, with m the number of 

confidence statements (total number of pairwise comparisons). The degrees of freedom is equal to 

the total number of values minus the number of groups. 
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Analysis of residuals 

The “Residuals” tab shows properties of the residuals, in order to evaluate some assumptions of 

ANOVA such as normal and homoskedastic distribution of residuals. 

The Shapiro-Wilk test for normal distribution is given, together with several common plots of 

residuals (normal probability, residuals vs. group means, and histogram). 

 

 

 

Tukey’s pairwise post-hoc tests 

If the ANOVA shows significant inequality of the means (small p), you can go on to study the given 

table of "post-hoc" pairwise comparisons, based on the Tukey-Kramer test. The Studentized Range 

Statistic Q is given in the lower left triangle of the array, and the probabilities p(equal) in the upper 

right. 

n

XX
Q SL

wgMS

−
= , 

where XL is the larger and XS the smaller mean of the two samples being compared. If the sample 

sizes are not equal, their harmonic mean is used for n. Its significance is estimated according to  

Copenhaver & Holland (1988), with dfwg degrees of freedom. There is also an option to use the  

slightly less accurate method of Lund & Lund (1983) which was used in older versions of Past. 
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Kruskal-Wallis 

The Kruskal-Wallis test is a non-parametric ANOVA, comparing the medians of several univariate 

groups (given in columns). It can also be regarded as a multiple-group extension of the Mann-

Whitney test (Zar 1996). It does not assume normal distribution, but does assume equal-shaped 

distribution for all groups. The null hypothesis is 

H0: The samples are taken from populations with equal medians. 

 

  

 

The test statistic H is computed as follows: 
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where ng is the number of elements in group g, n is the total number of elements, and Tg is the sum 
of ranks in group g. 

The test statistic Hc is adjusted for ties: 
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where fi is the number of elements in tie i. 
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With G the number of groups, the p value is approximated from Hc using the chi-square distribution 
with G-1 degrees of freedom. This is less accurate if any ng<5. 

 

Mann-Whitney pairwise post-hoc tests 

Mann-Whitney pairwise test p values are given for all Np=G(G-1)/2 pairs of groups. The asymptotic 
approximation described under the Mann-Whitney module is used. If samples are very small, it may 
be useful to run the exact test available in that module instead. Four different views are available for 
the symmetric table: 

1. Raw p values, uncorrected significance: The p values from each individual pairwise test, 
marked in pink if p<0.05, not corrected for multiple testing. 

2. Raw p values, sequential Bonferroni significance: The p values from each individual pairwise 
test are shown uncorrected for multiple testing. Significance (pink marking) is assessed by 
first evaluating the smallest p value, with Bonferroni correction for Np pairs. If significant 
(pNp<0.05)  the next smallest p value is significant if p(Np-1)<0.05, etc. 

3. Bonferroni corrected p values: The values shown are p’ =  pNp. Marked as significant if 
p’<0.05. 

4. Mann-Whitney U: The test statistics. 

Dunn’s post-hoc 

The Dunn’s post hoc test (Dunn 1964) is a pairwise test often carried out after a significant Kruskal-
Wallis test. It is an alternative to the pairwise Mann-Whitney. With Tg the sum of ranks within group 
g from the Kruskal-Wallis test, calculate for each group the average rank: 

𝑇̅𝑔 =
𝑇𝑔

𝑛𝑔
 

To compare two groups A and B, calculate the z statistic 

𝑧AB =
|𝑇̅𝐴 − 𝑇̅𝐵|

𝜌AB
 

𝜌AB = √(
𝑛(𝑛 + 1)

12
−

∑ 𝑓𝑖
3 − 𝑓𝑖𝑖

12(𝑛 − 1)
)(

1

𝑛𝐴
+

1

𝑛𝐵
) 

Here, n is the total sample size and fi the number of elements in tie i, as in the Kruskal-Wallis test. See 
pairwise Mann-Whitney above for the various options in the table output (raw p values, raw p values 
with sequential Bonferroni, Bonferroni corrected p values, and the z statistics). 
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Several-samples repeated measures tests  
 

In repeated measures ANOVA, values in each row are observations on the same “subject”. Repeated-

measures ANOVA is the extension of the paired t test to several samples. Each column (sample) must 

contain the same number of values. 

Missing values are not supported. 

 

 

The procedure begins like the independent-samples one-way ANOVA above. In short, 

( ) −=
g

Tg xxn
2

bgSS , 

where n is the sample size. The associated dfbg  is the number of groups minus one. 

( ) −=
g i
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where the xi are those in group g. The associated dfwg is the total number of values minus the 

number of groups. 

The between-subjects sum of squares is 

 ( ) −=
i

Ti xxn
2

subSS , 

where the ix  are means of subject i across groups. The associated dfsub is the number of subjects 

minus one. 
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The SSerror is simply SSwg – SSsub, with dferror = dfwg – dfsub. 

The mean squares are then the sum squares divided by their respective degrees of freedom: 
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Finally, the F ratio is MSbg / MSerror, with dfbg  and dferror  degrees of freedom. 

 

Sphericity estimates and corrections 

An assumption of repeated measures ANOVA is sphericity, meaning equal variances of the 

differences between all combinations of groups. A statistic called epsilon approaches 1 for data 

meeting the sphericity assumption. For smaller values of epsilon, a correction can be applied to the 

degrees of freedom of the F test, providing a corrected p value for the ANOVA. PAST provides two 

versions of this procedure, Greenhouse-Geisser (Greenhouse & Geisser 1959) and Huynh-Feldt 

(Huynh & Feldt 1976). 

 

Tukey’s pairwise post-hoc tests 

The "post-hoc" pairwise comparisons are based on the Tukey test. The Studentized Range Statistic Q 

is given in the lower left triangle of the array, and the probabilities p(equal) in the upper right. 

n

XX
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errorMS

−
= , 

where XL is the larger and XS the smaller mean of the two samples being compared. There are dferror 

degrees of freedom. 
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Friedman test 

The Friedman test is a non-parametric test for equality of medians in several repeated-measures 

univariate groups. It can be regarded as the non-parametric version of repeated-measures ANOVA, 

or the repeated-measures version of the Kruskal-Wallis test.  

 

 

The Friedman test follows Bortz et al. (2000). The basic test statistic is 


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where n is the number of rows, k the number of columns and Tj the column sums of the data table. 

The 2 value is then corrected for ties (if any): 
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where m is the total number of tie groups and ti are the numbers of values in each tie group. 

For k=2, it is recommended to use one of the paired tests (e.g. sign or Wilcoxon test) instead. For 

small data sets where k=3 and n<10, or k=4 and n<8, the tie-corrected 2 value is looked up in a table 

of “exact” p values. When given, this is the preferred p value. 
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The asymptotic p value (using the 2 distribution with k-1 degrees of freedom) is fairly accurate for 

larger data sets. It is computed from a continuity corrected version of 2: 
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This 2 value is also corrected for ties using the equation above. 

The post hoc tests are by simple pairwise Wilcoxon, exact for n<20, asymptotic for n>=20. These tests 

have higher power than the Friedman test. 
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Two-way ANOVA 

Two-way ANOVA (analysis of variance) tests the null hypotheses that several univariate samples have 
the same mean across each of two factors A and B, and that there are no dependencies (interactions) 
between factors. The samples are assumed to be close to normally distributed and have similar 
variances. If the sample sizes are equal, these two assumptions are not critical. The default analysis is 
a fixed-effect blocked design (the most usual case). There is also an option for random-effect blocked 
two-way ANOVA, and fixed-effect and random-effect, nested two-way ANOVA. There is no 
interaction term for the nested design. 

Past supports unbalanced designs (unequal sample sizes for each factor combination). In this case, a 
“Model II” ANOVA is carried out (Fox 2016). 

Three columns are needed: A group column (set data type to Group with ‘Column attributes’) with 
the levels for factor A, a group column with the levels for factor B, and a column of the corresponding 
measured values. 

  

 

The algorithm uses weighted means. 

Total sum of squares: 

( ) −=
i
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TSS , 

taken over all points. The associated degrees of freedom dfT  is the total number of values minus one.  
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Within-group (error) sum of squares: 
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1 2

21

2

wgSS
g g i

ggi xx , 

where the xi  are those in group (level) g1 for the first factor and g2 for the second factor, and the 
mean is taken within the same group combination. The associated dfwg is the total number of values 
minus the product of numbers of groups and columns. 

The between-groups sum of squares  SSbg = SST – SSwg can be partitioned into three, namely the 
Factor A, Factor B and interaction terms. 

  ( ) −=
i

iA xxN
2

ASS , 

where the sum is over levels of Factor A, and the two means are the level mean and the total mean, 
respectively. NA is the number of levels of A. The degrees of freedom is dfA = NA – 1. Similarly, for 
Factor B: 

( ) −=
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BSS  

where now the sum is over levels of Factor B. The degrees of freedom is dfB = NB – 1. 

The interaction sum of squares is SSAxB = SSbg – SSA – SSB, with  dfAxB = (NA - 1)(NB - 1) degrees of 
freedom. 

For unbalanced designs (Model II), the computations are more complex, using dummy-variable 
multiple regressions (Fox 2016). 

Mean squares MS are the sum of squares divided by their respective degrees of freedom. 

Finally, the F ratios are 

 FA = MSA / MSwg 
 FB = MSB / MSwg 
 FAxB = MSAxB / MSwg 
 
Random effects 
 
The random-effects ANOVA is computed as fixed effects ANOVA, except 

FA = MSA / MSAxB 
FB = MSB / MSAxB. 

 
For random-effects ANOVA, the components of variance are computed as follows (only for balanced 
design, where n is the sample size for each level combination): 

var(A) = (MSA – var(err) – n var(AxB)) / (nNB) 
var(B) = (MSB – var(err) – n var(AxB)) / (nNA) 
var(AxB) = (MSAxB – var(err) ) / n 
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var(err) = MSwg 

Nested two-way ANOVA 

The main factor (factor A) sum-of-squares SSA, degrees of freedom dfA and mean square MSA are 
calculated as above. For the fixed-effects model, FA is calculated as above, while for random-effects it 
is FA=MSA/MSB. The nested factor (factor B) is always random-effect. 

Graph of means 

The graph of means is a simple graphical device, traditionally used to see the effects of factors and 
their interaction for a two-way ANOVA. The means are shown with either the A levels or the B levels 
on the x axis, and the other levels as separate lines: 

  

Tukey’s post-hoc tests 

Tukey’s post-hoc tests are available for the two main factors, and for all unconfounded interactions. 
For the main factors, the Studentized Range Statistic Q is given in the lower left triangle of the array, 
and the probabilities p(equal) in the upper right. The interaction test uses the “adjusted k” value, 
accounting for the number of unconfounded comparisons, for up to 7 levels in each factor. For larger 
number of levels, the k value is not adjusted. 

Missing values : Rows with missing values are deleted. 

Reference 

Fox, J. 2016. Applied Regression Analysis and Generalized Linear Models, 3rd ed. Sage Publications. 
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Two-way ANOVA without replication 

Two-way ANOVA for testing the null hypotheses that several univariate samples have the same mean 

across each of two factors. This module expects only one observation for each combination of levels 

for the two factors. The input data format is a table where the first factor levels enter in rows, and 

the second factor level in columns, e.g. a table of veterinary lab results: 

 

 

There is no interaction term. 

The equations are given by Ireland (2010), pp. 130-131. 

Reference 

Ireland, C.R. 2010. Experimental Statistics for Agriculture and Horticulture. CABI, 352 pp. 
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Two-way repeated measures ANOVA 

Three data columns are needed: A group column (set data type to Group with ‘Column attributes’) 

with the levels for factor A, a group column with the levels for factor B, a group column with 

identifiers for the cases (subjects) and a column of the corresponding measured values. 

Each subject must have exactly one entry for each combination of levels. Therefore, if you have M 

levels for factor A, N levels for factor B and S subjects, you need exactly MxNxS rows in total. 

Other functionality is similar to the two-way ANOVA module described above. Missing data are not 

supported! 

 

 

Example data formatted for two-way repeated measures ANOVA. 
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One-way ANCOVA 

ANCOVA (Analysis of Covariance) tests for equality of means for several univariate groups, adjusted 
for covariance with another variate. ANCOVA can be compared with ANOVA, but has the added 
feature that for each group, variance that can be explained by a specified "nuisance" covariate (x) is 
removed. This adjustment can increase the power of the test substantially. 

The program expects two or more pairs of columns, where each pair (group) is a set of correlated x-y 
data (means are compared for y, while x is the covariate). The example below uses three pairs 
(groups) a, b and c. 

 

The Plot tab presents a scatter plot and linear regression lines for all the groups. The ANOVA-like 
summary table contains sum-of-squares etc. for the adjusted means (between-groups effect) and 
adjusted error (within-groups), together with an F test for the adjusted means. An F test for the 
equality of regression slopes (as assumed by the ANCOVA) is also given. In the example, equal 
adjusted means in the three groups can be rejected at p<0.05. Equality of slopes can not be rejected 
(p=0.74). 

The Groups tab gives the summary statistics for each group (mean, adjusted mean and regression 
slope). 

Assumptions include similar linear regression slopes for all groups, normal distributions, similar 
variance and sample sizes. 

Missing data: x-y pairs with either x or y missing are disregarded.  
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Correlation table 

Two or more columns are required. A matrix is presented with the correlations between all pairs of 

columns. In the ‘Statistic \ p(uncorr)’ table format, correlation values are given in the lower triangle 

of the matrix, and the two-tailed probabilities that the columns are uncorrelated are given in the 

upper. Both parametric and non-parametric coefficients and tests are available. 

Missing data: Supported by pairwise deletion, except for partial correlation which uses mean value 

imputation. 

 

 

 

Linear r (Pearson) 

Pearson’s r is the most commonly used parametric correlation coefficient. It is given by 
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The significance is computed using a two-tailed t test with n-2 degrees of freedom and 
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Bayes factor  

A Bayes factor for Pearson’s r is computed according to “Jeffrey’s integrated Bayes factor”, eq. (30) in 

Ly et al. (2016): 



83 

 

𝐵𝐹10
𝑗,𝑖

(𝑛, 𝑟) =
𝜋

2

Γ (
𝑛 + 1

2
)

Γ (
𝑛 + 2

2 )
2𝐹1 (

2𝑛 − 3

4
; 
2𝑛 − 1

4
; 
𝑛 + 2

2
; 𝑟2) 

where 2F1 is the Gaussian hypergeometric function (evaluated as a Taylor series; Section 4.2 in 

Pearson et al. 2016). Large values of the Bayes factor (>3) indicate evidence for correlation (positive 

or negative). 

Spearman’s D and rs 

Spearman’s (non-parametric) rank-order correlation coefficient is the linear correlation coefficient 

(Pearson’s r) of the ranks. Following Press et al. (1992) it is computed as 
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Here, D is the sum squared difference of ranks (midranks for ties): 
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The fk are the numbers of ties in the kth group of ties among the Ri’s, and the gm are the numbers of 

ties in the mth group of ties among the Si’s. 

For n>9, the probability of non-zero rs (two-tailed) is computed using a t test with n-2 degrees of 

freedom: 
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For small n this approximation is inaccurate, and for n<=9 the program therefore switches 

automatically to an exact test. This test compares the observed rs to the values obtained from all 

possible permutations of the first column. 

Kendall’s tau 

This non-parametric correlation coefficient is not in very common use. It is computed according to 

Press et al. (1992). All possible N(N-1)/2 pairs of bivariate data points are considered. If two pairs 

have the same direction in x as in y (x and y both decrease, or both increase), they are called 

concordant. If not, they are discordant. A tie in the x’s is called an extra-x, and a tie in the y’s is called 

an extra-y. Pairs with ties in both variables are discarded. The number of pairs in the four categories 

are counted. Then, 
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The asymptotic test is based on Kendall’s tau being approximately normal, with zero mean and 
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Polyserial correlation 

This correlation is only carried out if the second column consists of integers with a range less than 

100. It is designed for correlating a normally distributed continuous/interval variable (first column) 

with an ordinal variable (second column) that bins a normally distributed variable. For example, the 

second column could contain the numbers 1-3 coding for “small”, “medium” and “large”. There 

would typically be more “medium” than “small” or “large” values because of the underlying normal 

distribution of sizes. 

Past uses the two-step algorithm of Olsson et al. (1982). This is more accurate than their “ad hoc” 

estimator, and nearly as accurate as the full multivariate ML algorithm. The two-step algorithm was 

chosen because of speed, allowing a permutation test (but only for N<100; not yet in Past 3). For 

larger N the given asymptotic test (log-ratio test) is accurate. 

Partial linear correlation 

Using this option, for each pair of columns, the linear correlation is computed while controlling for all 

the remaining columns. For example, with three columns A, B, C the correlation AB is controlled for 

C; AC is controlled for B; BC is controlled for A. The partial linear correlation can be defined as the 

correlation of the residuals after regression on the controlling variable(s). The significance is 

estimated with a t test with n-2-k degrees of freedom, where k is the number of controlling variables: 

21

2

r

kn
rt

−

−−
=  

Phi coefficient 

The phi coefficient (Lovell et al. 2015) was designed for compositional (relative) data such as 

percentages. The usual correlation coefficients can be misleading for such data. The coefficient 

measures the degree of proportionality; the smaller the value (close to zero), the more the variables 

exhibit a proportional relationship. Pairs of variables can show strong correlations but low 

proportionality when they are linearly related, but with a non-zero intercept term. 

Each variable is first transformed using the centered logratio transformation 

clr(x) = [ln
𝑥1

𝑔(𝒙)
, ⋯ , ln

𝑥𝑁

𝑔(𝒙)
] 
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where g(x) is the geometric mean of the data vector. The proportionality between two transformed 

variables x and y is then computed by 

𝜑 =
var(𝒙 𝒚)⁄

var(𝒙)
 

where var(x) is the variance of the vector x. Significance is computed by testing whether x+y and x-y 

are uncorrelated. Significance testing is however not recommended by Lovell et al. (2015). 

Tetrachoric correlation 

Tetrachoric correlation is appropriate when both variables are binary (0/1), but reflecting underlying 

quantities on a continuous scale. Past uses an accurate approximation due to Bonett & Price (2005). 

Let f11 be the number of rows with the binary pair 1/1, f12 the number of 1/0, f21 the number of 0/1, 

and f22 is the number of rows with the binary pair 1/1. An estimator of the odds ratio of this 

contingency table is 

𝜔̂ =
(𝑓11 + 0.5)(𝑓22 + 0.5)

(𝑓12 + 0.5)(𝑓21 + 0.5)
 

We then calculate the sample proportions p from the frequencies f, after adding 0.5 to each f, i.e. p11 

= (f11+0.5)/(N+2) etc. (we add 2 because the total number has been increased by adding 0.5 to each 

of the four f; this is not precisely specified by Bonett & Price). Then calculate p1+ = p11+p12 and p+1 = 

p11+p21. Also, pmin is the smallest marginal proportion (row or column sum in the p table). Then, 

𝑐̂ =
1−

|𝑝1+−𝑝+1|

5
−(0.5−𝑝min)

2

2
 

 

and the estimator for the tetrachoric correlation coefficient is 

𝜌̂∗ = cos (
𝜋

1 + 𝜔̂𝑐̂
) 

A standard error of this estimate is calculated by eq. (9) in Bonett & Price (2005), and a p value is 

then estimated by a simple two-sided Z test. For small sample sizes, the permutation test calculated 

by Past is probably better. 

Permutation tests 

Monte Carlo permutation tests (N=9999) are available for all the correlation coefficients except 

polyserial and partial correlation, and the phi coefficient. 

Correlation table plots 

Plotting of the correlation table includes several options. The “Ellipses” function shows the 

correlation coefficients r as ellipses with major axis of unity, and minor axis d according to Schilling 

(1984): 
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𝑟 =
1 − 𝑑2

1 + 𝑑2
 

The correlation table plot is not valid for the phi coefficient. 
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Intraclass correlation 
A typical use of the intraclass correlation coefficient (ICC) is to quantify rater reliability, i.e. level of 

agreement between several ‘raters’ measuring the same objects. It is a standard tool to assess 

measurement error. ICC=1 would indicate perfect reliability. Raters (or ‘judges’) go in columns, while 

the objects measured go in rows. In the example below there are four raters A-B, which have 

measured 6 objects. 

 

Past follows the standard reference, Shrout and Fleiss (1979), which provides a number of different 

coefficients, referred to as ICC(m,k) where m is the model type.  If k=1,  the coefficient evaluates 

individual measurements (by a single rater); otherwise it evaluates the average measurement across 

raters. The models are 

Model 1: the raters rating different objects are different, and randomly sampled from a larger set of 

raters 

Model 2: the same raters rate all objects, and the raters are a subset of a larger set of raters. 

Model 3: no assumptions about the raters.    

The most commonly used ICC is ICC(2,1), which is therefore marked in red in Past. 

The analysis is based on a two-way ANOVA without replication, as described elsewhere in this 

manual. Confidence intervals are parametric, following the equations of Shrout and Fleiss (1979). The 
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data in the example above are from the Shrout and Fleiss paper, the output from Past reproducing 

their results. 

Reference 

Shrout, P.E., Fleiss, J.L. 1979. Intraclass correlations: Uses in assessing rater reliability. Psychological 

Bulletin 86:420-428. 
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Normality tests 

Four statistical tests for normal distribution of one or several samples of univariate data, given in one 
or more separate columns or with a single data column and a group column. The data used below 
were generated by the normal and uniform random number generators in Past (‘Evaluate expression’ 
module). 

  

 

For all four tests, the null hypothesis is 

H0: The sample was taken from a population with normal distribution. 

If the given p(normal) is less than 0.05, normal distribution can be rejected (marked in pink). Of the 
given tests, the Shapiro-Wilk and Anderson-Darling are considered to be the more exact, and the 
Lilliefors and Jarque-Bera are given for reference. And even poorer test (four-bin chi-squared) was 
included in previous versions of Past. There is a maximum sample size of n=5000, while the minimum 
sample size is 3 (the tests will of course have extremely small power for such small n). 

Remember the multiple testing issue if you run these tests on several samples – a Bonferroni or 
other correction may be appropriate. 

Missing data: Supported by deletion. 

 

Shapiro-Wilk test 

The Shapiro-Wilk test (Shapiro & Wilk 1965) returns a test statistic W, which is small for non-normal 
samples, and a p value. The implementation is based on the standard code “AS R94” (Royston 1995), 
correcting an inaccuracy in the previous algorithm “AS 181” for large sample sizes. 

 

Anderson-Darling test 

The data Xi are sorted in ascending sequence, and normalized for mean and standard deviation: 
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Significance is estimated according to Stephens (1986). First, a correction for small sample size is 
applied: 
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Lilliefors test 

The Lilliefors test is basically the same as the Kolmogorov-Smirnov test, comparing the sample 
distribution with a normal distribution with mean and variance estimated from the data. Because of 
this parameter estimation, significance must be computed in a different way than for Kolmogorov-
Smirnov. In addition to the Monte Carlo procedure, Past reports a p value using an approximation to 
published tables given by Molin & Abdi (1998) and Abdi & Molin (2007): 

b2 = 0.08861783849346 
b1 = 1.30748185078790 
b0 = 0.37872256037043 
 

𝐴 =
−(𝑏1 + 𝑁) + √(𝑏1 + 𝑁)2 − 4𝑏2(𝑏0 − 1 𝐿2⁄ )

2𝑏2
 

p = -0.37782822932809 + 1.67819837908004A - 3.02959249450445A2 
+ 2.80015798142101A3 - 1.39874347510845A4 
+ 0.40466213484419A5 - 0.06353440854207A6 
+ 0.00287462087623A7 + 0.00069650013110A8 
+ 0.00011872227037A9 + 0.00000575586834A10 

 

 Jarque-Bera test 

The Jarque-Bera test (Jarque & Bera 1987) is based on skewness S and kurtosis K. The test statistic is 
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Note that these equations contain simpler estimators than the G1 and G2 given in the Univariate 
summary statistics module, and that the kurtosis here will be 3, not zero, for a normal distribution. 

Asymptotically (for large sample sizes), the test statistic has a chi-square distribution with two 
degrees of freedom, and this forms the basis for the p value given by Past. It is known that this 
approach works well only for large sample sizes, and Past therefore also includes a significance test 
based on Monte Carlo simulation, with 10,000 random values taken from a normal distribution. 
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Outlier tests 
A single column of numbers is required. These tests provide objective procedures for detecting 

outliers in normally distributed data. The “single outlier” tests (Grubbs and Dixon) are designed to 

detect one outlier only, and should not be repeated for several outliers. The “multiple outlier” test 

(generalized ESD) attempts to detect multiple outliers, if present. 

Grubbs test 

The Grubbs test (also known as the Pearson-Hartley or the Extreme Studentized Deviate) tests for a 

single outlier. The basic reference is Grubbs (1950) but the actual reference for the G statistic as 

defined by e.g. Wikipedia and NIST is difficult to trace down. In any case, we define G as 

𝐺 =
max|𝑥𝑖 − 𝑥̅|

𝑠
 

where 𝑥̅ is the sample mean and s is the sample standard deviation. The critical value for G at a two-

sided significance level of α is given by 

𝐺 >
𝑁 − 1

√𝑁
√

(𝑡𝛼 (2𝑁),𝑁−2⁄ )
2

𝑁 − 2 + (𝑡𝛼 (2𝑁),𝑁−2⁄ )
2 

where 𝑡𝛼⁄(2𝑁),𝑁−2 is the critical value of the t distribution with N-2 degrees of freedom and a 

significance level of α/(2N). Past solves this equation for α to give the p value for given G and N. Note 

that this is a two-sided test, testing for presence of an outlier at either end of the range (smallest or 

largest value). The Grubb’s test is recommended for relatively large sample sizes (N>30). For smaller 

sample sizes, the Dixon test is preferable, although the two tests usually give similar results. 

Dixon’s test 

The Dixon test (Dixon 1950) tests for a single outlier. It can only be used for small sample sizes 

(N<=30) but is then considered superior to the Grubbs test. The gap between the smallest (or largest) 

value and its adjacent value is compared to the total range, giving a test statistic Q. The calculation of 

Q depends on sample size as follows (the sample values x are sorted in ascending order): 

Sample size N Test statistic Q At data minimum At data maximum 

3 ≤ N ≤ 7 r10 𝑥2 − 𝑥1

𝑥𝑁 − 𝑥1
 

𝑥𝑁 − 𝑥𝑁−1

𝑥𝑁 − 𝑥1
 

8 ≤ N ≤ 10 r11 𝑥2 − 𝑥1

𝑥𝑁−1 − 𝑥1
 

𝑥𝑁 − 𝑥𝑁−1

𝑥𝑁 − 𝑥2
 

11 ≤ N ≤ 13 r21 𝑥3 − 𝑥1

𝑥𝑁−1 − 𝑥1
 

𝑥𝑁 − 𝑥𝑁−2

𝑥𝑁 − 𝑥2
 

14 ≤ N ≤ 30 r22 𝑥3 − 𝑥1

𝑥𝑁−2 − 𝑥1
 

𝑥𝑁 − 𝑥𝑁−2

𝑥𝑁 − 𝑥3
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The p value (two-tailed) is estimated by Monte Carlo simulation with 200,000 random, normally 

distributed samples of size N (it will vary slightly between runs). 

Generalized ESD (Extreme Studentized Deviate) test 

This procedure can detect more than one outlier. Moreover, it can detect outliers even when the 

one-outlier tests above do not report significance, because of so-called “masking”. 

The procedure starts by testing the most extreme value in the complete sample, giving a test statistic 

R1 (= Grubbs G). This most extreme value is then removed from the sample and the procedure is 

repeated until 20% of the sample has been tested. The critical value Rcrit (for significance at p<0.05) is 

adjusted for each iteration (Rosner 1983). Past marks the values for which R>Rcrit in pink. A p value is 

not calculated explicitly in Past. 

Important: All of the most extreme values, up to the last value for which R>Rcrit, are to be considered 

outliers, and are marked as such in Past. Quite often, the initial, most extreme values do not give 

R>Rcrit but they can still be outliers because of a significant value further down in the list. This is due 

to the masking effect. It looks odd, but is not a bug! 
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Contingency table (chi2 etc.) 

These tests expect a frequency table with numbers of elements in different categories (rows and 

columns). Rows represent the different states of one nominal variable, columns represent the states 

of another nominal variable, and cells contain the integer counts of occurrences of that specific state 

(row, column) of the two variables. The contingency table analysis then gives information on whether 

the two variables of taxon and locality are associated. For example, this test can be used to compare 

two samples (columns) with the number of individuals in each taxon organized in the rows. You 

should be cautious about this test if any of the cells contain less than five individuals (see Fisher’s 

exact test below). 

The significance of association between the two variables is given, with p values from the chi-squared 

distribution and from a permutation test with 9999 replicates. 

 

The "Sample vs. expected" box should be ticked if you have two columns, and your second column 

consists of counts from a theoretical distribution (expected values) with zero sampling error, possibly 

non-integer. This is not a small-sample correction.  In this case, only the chi-squared test is available. 

The Monte Carlo permutation test uses the given number of random replicates. For "Sample vs. 

expected" these replicates are generated by keeping the expected values fixed, while the values in 

the first column are random with relative probabilities as specified by the expected values, and with 

constant sum. For two samples, all cells are random but with constant row and column sums. 

See e.g. Brown & Rothery (1993) or Davis (1986) for details.  

The Fisher's exact test is also given (two-tailed). When available, the Fisher's exact test may be far 

superior to the chi-square. For large tables or large counts, the computation time can be prohibitive 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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and this test is not carried out. In such cases the parametric test is probably acceptable in any case. 

The procedure is complex and based on the network algorithm of Mehta & Patel (1986). 

Two further measures of association are given. Both are transformations of chi-squared (Press et al. 

1992). With n the total sum of counts, M the number of rows and N the number of columns: 

Cramer’s V:   
( )1N,1Mminn

V
2

−−


=  

Contingency coefficient C: 
n

C
2

2

+


=  

Note that for nx2 tables, the Fisher’s exact test is available in the Chi^2 module. 

Missing data not supported. 

Residuals 

If you get a significant association (p<0.05) in the chi-squared test, it may be of interest to see which 
of the cells contribute most strongly to the departure from the expected values under the null 
hypothesis of no association (post-hoc analysis). The table of residuals can show the following values 
for each cell: 

Raw residuals: O-E, where O is the observed and E the expected value. 

Standardized residuals: (O-E)/√E, standardizing for the magnitude of the expected value. 

Adjusted residuals: 

adj_resid =
𝑂 − 𝐸

√𝐸(1 − RowMarginal 𝑛⁄ )(1 − ColumnMarginal 𝑛⁄ )
 

where the RowMarginal is the row sum and ColumnMarginal is the column sum of the cell. 

p values: The adjusted residuals are approximately normally distributed, meaning that values outside 
the two-sigma interval [-1.96, 1.96] can be considered significant at p<0.05, although the multiple 
testing problem applies. It is recommended to use the Bonferroni correction. Significant p values are 
marked in pink. 

References 
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Cochran-Mantel-Haenszel test 
Similar to the chi-squared test but testing several (repeated) 2x2 contingency tables simultaneously, 
in order to control for a nuisance factor (Mantel & Haenszel 1959). An example could be controlling 
for season when testing for the effect of a medicine that was used in repeated experiments through 
a year. The 2x2 tables must be given in consecutive rows in the spreadsheet (first, one 2x2 table, 
followed below by the next table, etc.). 

Our algorithm follows McDonald (2014). Indexing the individual tables by k, we write one particular 
table as 

[
𝑎𝑘 𝑏𝑘

𝑐𝑘 𝑑𝑘
] 

With M the number of tables, and nk = ak + bk + ck + dk , the chi-squared is calculated as 

𝜒𝑀𝐻
2 =

[|∑ (𝑎𝑘 − (𝑎𝑘 + 𝑏𝑘)(𝑎𝑘 + 𝑐𝑘) 𝑛𝑘⁄ )𝑀
𝑘=1 | − 0.5]

2

∑ (𝑎𝑘 + 𝑏𝑘)𝑀
𝑘=1 (𝑎𝑘 + 𝑐𝑘)(𝑏𝑘 + 𝑑𝑘)(𝑐𝑘 + 𝑑𝑘)/(𝑛𝑘

3 − 𝑛𝑘
2)

 

Note that other, algebraically equivalent, forms are often given in the literature. The subtraction of 
0.5 is a continuity correction, not always included in other software. This test statistic is distributed 
as χ2 with one degree of freedom. 

In addition, the common odds ratio (equal to one for total independence) is calculated using the 
Mantel-Haenszel (1959) estimate: 

𝜃𝑀𝐻 =
∑ 𝑎𝑘𝑑𝑘 𝑛𝑘⁄𝑀

𝑘=1

∑ 𝑏𝑘𝑐𝑘 𝑛𝑘⁄𝑀
𝑘=1

 

 

Missing data not supported. 
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Risk/odds 
This module compares the counts of a binary outcome under two different treatments, with statistics 

that are in common use in medicine. The data are entered in a 2x2 table, with treatments in rows 

and counts of the two different outcomes in columns. 

The following example shows the results of a vaccination trial on 460 patients: 

 Got influenza Did not get influenza 

Vaccine 20 220 

Placebo 80 140 

 

In general, the data take the form 

 Outcome 1 Outcome 2 

Treatment 1 d1 h1 

Treatment 2 d0 h0 

 

 

 

Let n1=d1+h1, n0=d0+h0 and p1=d1/n1, p0=d0/n0. The statistics are then computed as follows: 
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Risk difference:  RD = p1-p0 

95% confidence interval on risk difference (Pearson’s chi-squared): 

( ) ( )

0

|00
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11| 11

n

pp

n

pp
se

−
+

−
=  

Interval: RD - 1.96 se to RD + 1.96 se  
 

Z test on risk difference (two-tailed): 

es

RD
z =  

Risk ratio:  RR = p1/p0 

95% confidence interval on risk ratio (“delta method”): 

( )
0011
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ln

ndnd
RRse −+−=  

es
eEF

96.1
=  

Interval: RR / EF to RR x EF 

Z test on risk ratio (two-tailed): 

es

RR
z

ln
=  

Odds ratio:  
00

11

hd

hd
OR =   

95% confidence interval on odds ratio (“Woolfs’s formula”): 

( )
0011

1111
ln

hdhd
ORse +++=  

es
eEF

96.1
=  

Interval: OR / EF to OR x EF 

Note there is currently no continuity correction. 

Missing data are not allowed and will give an error message. 
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Single proportion 
A simple module for calculating the probability of an observed (sample) proportion (in the range 0-1) 

against a hypothetical proportion. No input data are required in the spreadsheet. 

With p the sample proportion, P the hypothetical proportion, and n the sample size, we calculate the 

standard deviation 

𝜎 = √
𝑃(1 − 𝑃)

𝑛
 

Further, we calculate the z (normal distribution) statistic 

𝑧 =
𝑝 − 𝑃

𝜎
 

The (two-tailed) significance is calculated directly from z and the normal distribution. 

The 95% confidence interval for the proportion is calculated using two different methods. The ’exact’ 

interval is computed using the Clopper-Pearson method (Clopper and Pearson 1934) as 

(1 +
𝑛 − 𝑥 + 1

𝑥𝐹[1 − 𝛼 2⁄ ; 2𝑥, 2(𝑛 − 𝑥 + 1)]
)
−1

< 𝜃 < (1 +
𝑛 − 𝑥

(𝑥 + 1)𝐹[𝛼 2⁄ ;  2(𝑥 + 1), 2(𝑛 − 𝑥)]
)
−1

 

where α = 0.05, x is the number of successes computed as round(pn), and F(c; d1, d2) is the 1-c 

quantile for an F distribution with d1 and d2 degrees of freedom. The normal approximation is 

computed as 

𝑏 = √
𝑝(1 − 𝑝)

𝑛
 

𝐶𝐼 = (𝑝 − 1.96𝑏, 𝑝 + 1.96𝑏) 

The normal approximation CI is more commonly used. The exact CI is more accurate for small n. For 

large n the two methods will give similar results. 

Reference 

Clopper, C. & Pearson, E. S. 1934. The use of confidence or fiducial limits illustrated in the case of the 

binomial. Biometrika 26:404–413. 

  



100 

 

Multiple proportion confidence intervals 
Accepts two columns of data, the first column with proportions given as percentages (0-100) and the 

second column containing sample sizes (N). The program will compute 95% confidence intervals for 

all the proportions using the Clopper-Pearson method (see above), and plot them. 

 

Missing data are disregarded. 
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Ratio of counts confidence interval 
This module calculates confidence intervals for ratios of counts. It is specially designed for 

environmental indices based on microfossil counts in paleontology, on the form (a + c)/(b + c). This 

general formula covers the common cases a/b, where c=0, and c/(b+c), where a=0. No data are 

required in the spreadsheet. 

Two methods are provided, as described by Escarguel et al. (2019). The first is a Monte Carlo 

procedure based on a transformation of the normal distribution. The second is a straightforward 

bootstrap, with two versions (simple, which can produce negative values), and percentile. 

For the Monte Carlo procedure, first note that 𝑟 =
𝑎+𝑐

𝑏+𝑐
=

𝑎+𝑐

𝑇
𝑏+𝑐

𝑇

=
𝑎

𝑇
+

𝑐

𝑇
𝑏

𝑇
+

𝑐

𝑇

, where T = a+b+c. 

Let e and g be the arcsine-transformed values 𝑒 = sin-1√(a/T) and g = sin-1√(c/T). e and g should then 

be normally distributed variables with a sample standard deviation s = √(1/(4𝑇)) (Sokal and Rohlf, 

2011). Therefore, let e* and g* be normally distributed random variates with mean e and g, and 

standard deviation s. Then, e* and g* are back-transformed to proportion values (a/T)*= sin2 e* and 

(c/T)*= sin2 g*. Finally, a Monte-Carlo estimate of r is calculated as 𝑟∗ =
(
𝑎

𝑇
)
∗
+(

𝑐

𝑇
)
∗

1−(
𝑎

𝑇
)
∗ . 

This procedure is reiterated a large number (say, 10,000) times, leading to a Monte-Carlo distribution 

of r, from which the 2.5 and 97.5 percentiles define the 95% confidence interval. 

Reference 

Suchéras-Marx, B., Escarguel, G., Ferreira, J. & Hammer, Ø. 2019. Statistical confidence intervals for 

relative abundances and abundance-based ratios: simple practical solutions for an old overlooked 

question. Marine Micropaleontology 151: 101751. 
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Survival analysis (Kaplan-Meier curves, log-rank test etc.) 
Survival analysis for two groups (treatments) with provision for right censoring. The module draws 

Kaplan-Meier survival curves for the two groups and computes three different tests for equivalence. 

The program expects four columns. The first column contains times to failure (death) or censoring 

(failure not observed up to and including the given time) for the first group, the second column 

indicates failure (1) or censoring (0) for the corresponding individuals. The last two columns contain 

data for the second group. Failure times must be larger than zero. 

The program also accepts only one treatment (given in two columns), or more than two treatments 

in consecutive pairs of columns, plotting one or multiple Kaplan-Meier curves. The statistical tests are 

only comparing the first two groups, however. 

 

 

The Kaplan-Meier curves and the log-rank, Wilcoxon and Tarone-Ware tests are computed according 

to Kleinbaum & Klein (2005). 

Average time to failure includes the censored data. Average hazard is number of failures divided by 

sum of times to failure or censorship. 

The log-rank test is by chi-squared on the second group: 
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Here, nij is the number of individuals at risk, and mij the number of failures, in group i at distinct 

failure time j. The expected number of failures in group 2 at failure time j is 

 
( )

jj

jjj

j
nn

mmn
e

21

212

2
+

+
= . 

The chi-squared has one degree of freedom. 

The Wilcoxon and Tarone-Ware tests are weighted versions of the log-rank test, where the terms in 

the summation formulas for O2-E2 and var(O2-E2) receive weights of nj and nj, respectively. These 

tests therefore give more weight to early failure times. They are not in common use compared with 

the log-rank test. 

This module is not strictly necessary for survival analysis without right censoring – the Mann-Whitney 

test may be sufficient for this simpler case. 

Missing data: Data points with missing value in one or both columns are disregarded. 

Reference 

Kleinbaum, D.G. & Klein, M. 2005. Survival analysis: a self-learning text. Springer.  
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Combine errors 

A simple module for producing a weighted mean and its standard deviation from a collection of 

measurements with errors (one sigma). Expects two columns: the data x and their one-sigma errors 

σ. The sum of the individual gaussian distributions is also plotted. 

 

 

 

The weighted mean and its standard deviation are computed as 




=

i

i

i

iix

2

2

1 



 ,  


=

i

i

21

1


 . 

This is the maximum-likelihood estimator for the mean, assuming all the individual distributions are 

normal with the same mean. 

Missing data: Rows with missing data in one or both columns are deleted.
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Multivariate menu 

Principal components  

Principal components analysis (PCA) finds hypothetical variables (components) accounting for as 
much as possible of the variance in your multivariate data (Davis 1986, Harper 1999, Legendre & 
Legendre 1998). These new variables are linear combinations of the original variables. PCA may be 
used for reduction of the data set to only two variables (the two first components), for plotting 
purposes.  One might also hypothesize that the most important components are correlated with 
other underlying variables. For morphometric data, this might be size, while for ecological data it 
might be a physical gradient (e.g. temperature or depth). 

The input data is a matrix of multivariate data, with items in rows and variates in columns. 

The PCA routine finds the eigenvalues and eigenvectors of the variance-covariance matrix or the 
correlation matrix, with the SVD algorithm. Use variance-covariance if all variables are measured in 
the same units (e.g. centimetres). Use correlation (normalized var-covar) if the variables are 
measured in different units; this implies normalizing all variables using division by their standard 
deviations. The eigenvalues give a measure of the variance accounted for by the corresponding 
eigenvectors (components). The percentages of variance accounted for by these components are 
also given. If most of the variance is accounted for by the first one or two components, you have 
scored a success, but if the variance is spread more or less evenly among the components, the PCA 
has in a sense not been very successful. 

In the example below (landmarks from gorilla skulls), component 1 is strong, explaining 45.9% of 
variance. The bootstrapped confidence intervals are not shown unless the ‘Bootstrap N’ value is non-
zero. 

 

 

http://folk.uio.no/ohammer/past/ref.html
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Groups: If groups are specified with a group column, the PCA can optionally be carried out within-
group or between-group. In within-group PCA, the average within each group is subtracted prior to 
eigenanalysis, essentially removing the differences between groups. In between-group PCA, the 
eigenanalysis is carried out on the group means (i.e. the items analysed are the groups, not the 
rows). For both within-group and between-group PCA, the PCA scores are computed using vector 
products with the original data. 

Supplementary variables: It is possible to include one or more initial columns containing additional 
supplementary variables for the analysis. These variables are not included in the ordination. The 
correlation coefficients between each supplementary variable and the PCA scores are presented as 
vectors from the origin (triplot). The lengths of the vectors are arbitrarily scaled to make a readable 
plot, so only their directions and relative lengths should be considered. 

Row-wise bootstrapping is carried out if a positive number of bootstrap replicates (e.g. 1000) is given 
in the 'Bootstrap N' box. The bootstrapped components are re-ordered and reversed according to 
Peres-Neto et al. (2003) to increase correspondence with the original axes. 95% bootstrapped 
confidence intervals are given for the eigenvalues.  

The 'Scree plot' (simple plot of eigenvalues) may also indicate the number of significant components. 
After this curve starts to flatten out, the components may be regarded as insignificant. 95% 
confidence intervals are shown if bootstrapping has been carried out. The eigenvalues expected 
under a random model (Broken Stick) are optionally plotted - eigenvalues under this curve may 
represent non-significant components (Jackson 1993). 

 

In the gorilla example above, the eigenvalues for the 16 components (blue line) lie above the broken 
stick values (red dashed line) for the first two components, although the broken stick is inside the 
95% confidence interval for the second component. 

The scatter plot shows all data points (rows) plotted in the coordinate system given by two of the 
components. If you have groups, they will be shown with different symbols and colours. The Minimal 
Spanning Tree is the shortest possible set of lines connecting all points. This may be used as a visual 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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aid in grouping close points. The MST is based on an Euclidean distance measure of the original data 
points, and is most meaningful when all variables use the same unit. The 'Biplot' option shows a 
projection of the original axes (variables) onto the scattergram. This is another visualisation of the 
PCA loadings (coefficients) - see below. 

If the "Eigenval scale" is ticked, the data points will be scaled by kd1 , and the biplot eigenvectors 

by kd   - this is the correlation biplot of Legendre & Legendre (1998). If not ticked, the data points 

are not scaled, while the biplot eigenvectors are normalized to equal length (but not to unity, for 
graphical reasons) - this is the distance biplot.  

  

 

The loadings plot shows to what degree your different original variables (given in the original order 
along the x axis) contribute to the different components (as chosen in the radio button panel). These 
component loadings are important when you try to interpret the 'meaning' of the components. The 
'Coefficients' option gives the PC coefficients, while 'Correlation' gives the correlation between a 
variable and the PC scores. If bootstrapping has been carried out, 95% confidence intervals are 
shown (only for the Coefficients option). 

Sphericity tests 

Bartlett’s sphericity test (Bartlett 1951) tests the null hypothesis that the points are sampled from a 
spherical distribution. If so, PCA will not be able to provide a useful reduction of dimensionality. The 
p value from this test should ideally be <0.05 (significant departure from sphericity). For PCA on the 
correlation matrix, Past uses the chi-squared approximation 

𝜒2 = −(𝑀 − 1 −
1

6
(2𝑁 + 5)) ln det𝑹 
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where M is the number of points, N the number of variables, and R the correlation matrix. The 
determinant is calculated as the product of eigenvalues. Bartlett (1951) used M instead of M-1, but 
later authors have tended to the latter as a bias correction. The χ2 has N(N-1)/2 degrees of freedom. 

Past also provides a Bartlett’s sphericity test for PCA on the var-covar matrix V, following Bartlett 
(1951). However, this test is not in common use, and its properties are not quite clear. It assumes 
equal variances in the variables. Use with caution: 

𝜒2 = −(𝑀 −
1

6
(2𝑁 + 1) + 2 𝑁⁄ ) ln det 𝑽 

with (N+2)(N-1)/2 degrees of freedom. Before calculating the determinant, all eigenvalues are 
divided by their mean. 

The Kaiser-Meyer-Olkin (KMO) measure (Kaiser 1970), also known as Measure of Sampling Adequacy 
(MSA), is only supported for PCA on the correlation matrix. 

The inverse of the correlation matrix P = R-1 is used to calculate the partial correlation matrix A, with 
elements 

𝐴𝑖𝑗 = −
𝑃𝑖𝑗

√𝑃𝑖𝑖𝑃𝑗𝑗

 

The KMO is then calculated as 

𝐾𝑀𝑂 =
∑ ∑ 𝑅𝑖𝑗

2
𝑗≠𝑖𝑖

∑ ∑ 𝑅𝑖𝑗
2

𝑗≠𝑖𝑖 + ∑ ∑ 𝐴𝑖𝑗
2

𝑗≠𝑖𝑖

 

KMO < 0.5 is reported as "unacceptable"; 0.5 ≤ KMO < 0.7 is reported as “mediocre”; 0.7 ≤ KMO <0.8 
is “good”; 0.8 ≤ KMO < 1 is “excellent”.    

Missing data can be handled by one of two methods: 

1. Mean value imputation: Missing values are replaced by their column average.  Not 
recommended. 

2. Iterative imputation: Missing values are inititally replaced by their column average. An initial 
PCA run is then used to compute regression values for the missing data. The procedure is 
iterated until convergence. This is usually the preferred method, but can cause some 
overestimation of the strength of the components (see Ilin & Raiko 2010). 

References 

Bartlett, M.S. 1951. The effect of standardization on a χ2 approximation in factor analysis. Biometrika 
38:337-344. 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons. 

Harper, D.A.T. (ed.). 1999. Numerical Palaeobiology. John Wiley & Sons. 
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Ilin, A. & T. Raiko. 2010. Practical approaches to Principal Component Analysis in the presence of 
missing values. Journal of Machine Learning Research 11:1957-2000. 
 
Jackson, D.A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and 
statistical approaches. Ecology 74:2204-2214. 

Kaiser, H.F. 1970. A second generation little jiffy. Psychometrika 35:401-415. 

Legendre, P. & L. Legendre. 1998. Numerical Ecology, 2nd English ed. Elsevier, 853 pp. 

Peres-Neto, P.R., D.A. Jackson & K.M. Somers. 2003. Giving meaningful interpretation to ordination 
axes: assessing loading significance in principal component analysis. Ecology 84:2347-2363. 
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Principal coordinates 
Principal coordinates analysis (PCoA) is another ordination method, also known as Metric 

Multidimensional Scaling. The algorithm is from Davis (1986). 

 

The PCoA routine finds the eigenvalues and eigenvectors of a matrix containing the distances or 

similarities between all data points. The Gower measure will normally be used instead of Euclidean 

distance, which gives results similar to PCA. An additional eleven distance measures are available - 

these are explained under Cluster Analysis. The eigenvalues, giving a measure of the variance 

accounted for by the corresponding eigenvectors (coordinates) are given for the first four most 

important coordinates (or fewer if there are fewer than four data points). The percentages of 

variance accounted for by these components are also given.  

The similarity/distance values are raised to the power of c (the "Transformation exponent") before 

eigenanalysis. The standard value is c=2. Higher values (4 or 6) may decrease the "horseshoe" effect 

(Podani & Miklos 2002).  

The scatter plot allows you to see all your data points (rows) plotted in the coordinate system given 

by the PCoA. If you have colored (grouped) rows, the different groups will be shown using different 

symbols and colours. The "Eigenvalue scaling" option scales each axis using the square root of the 

eigenvalue (recommended). The minimal spanning tree option is based on the selected similarity or 

distance index in the original space.  

Missing data is supported by pairwise deletion (not for the Raup-Crick, Rho or user-defined indices). 

References 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons. 

Podani, J. & I. Miklos. 2002. Resemblance coefficients and the horseshoe effect in principal 
coordinates analysis. Ecology 83:3331-3343. 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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Non-metric MDS 

Non-metric multidimensional scaling is based on a distance matrix computed with any of 21 

supported distance measures, as explained under Similarity and Distance Indices below. The 

algorithm then attempts to place the data points in a two- or three-dimensional coordinate system 

such that the ranked differences are preserved. For example, if the original distance between points 

4 and 7 is the ninth largest of all distances between any two points, points 4 and 7 will ideally be 

placed such that their euclidean distance in the 2D plane or 3D space is still the ninth largest. Non-

metric multidimensional scaling intentionally does not take absolute distances into account. 

 

The program may converge on a different solution in each run, depending upon the initial conditions. 

Each run is actually a sequence of 11 trials, from which the one with smallest stress is chosen. One of 

these trials uses PCoA as the initial condition, the others are random. The solution is automatically 

rotated to the major axes (2D and 3D).  

The algorithm implemented in PAST, which seems to work very well, is based on a new approach 

developed by Taguchi and Oono (2005).  

The minimal spanning tree option is based on the selected similarity or distance index in the original 

space.  

Environmental variables: It is possible to include one or more initial columns containing additional 

“environmental” variables for the analysis. These variables are not included in the ordination. The 

correlation coefficients between each environmental variable and the NMDS scores are presented as 

vectors from the origin. The lengths of the vectors are arbitrarily scaled to make a readable biplot, so 

only their directions and relative lengths should be considered. 

Column scores: The columns can be included in the NMDS plot as weighted averages of the row 

scores, as in Correspondence Analysis. The weighting uses the raw data values, and therefore does 
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not honour the choice of similarity index. However, it seems to work well for e.g. ecological data, 

allowing the plotting of species together with samples (sites). 

Shepard plot: This plot of obtained versus observed (target) ranks indicates the quality of the result. 

Ideally, all points should be placed on a straight ascending line (x=y). The R2 values are the 

coefficients of determination between distances along each ordination axis and the original distances 

(perhaps not a very meaningful value, but is reported by other NMDS programs so is included for 

completeness). 

Missing data is supported by pairwise deletion (not for the Raup-Crick, Rho and user-defined 

indices). For environmental variables, missing values are not included in the computation of 

correlations. 

 

Reference 

Taguchi, Y.-H., Oono, Y. 2005. Relational patterns of gene expression via non-metric 

multidimensional scaling analysis. Bioinformatics 21:730-40. 

 

http://www.mendeley.com/catalog/relational-patterns-gene-expression-via-nonmetric-multidimensional-scaling-analysis/
http://www.mendeley.com/catalog/relational-patterns-gene-expression-via-nonmetric-multidimensional-scaling-analysis/
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Correspondence analysis 

Correspondence analysis (CA) is yet another ordination method, somewhat similar to PCA but for 

counted data (Legendre & Legendre 1998). For comparing associations (columns) containing counts 

of taxa, or counted taxa (rows) across associations, CA is the more appropriate algorithm. Also, CA is 

more suitable if you expect that species have unimodal responses to the underlying parameters, that 

is they favour a certain range of the parameter, becoming rare for lower and higher values (this is in 

contrast to PCA, which assumes a linear response).  

The CA routine finds the eigenvalues and eigenvectors of a matrix containing the Chi-squared 

distances between all rows (or columns, if that is more efficient – the result is the same). The 

algorithm follows Greenacre (2010), with SVD. The eigenvalue, giving a measure of the similarity 

accounted for by the corresponding eigenvector, is given for each eigenvector. The percentages of 

similarity accounted for by these components are also given.  

The scatter plot allows you to see all your data points (rows) plotted in the coordinate system given 

by the CA. If you have grouped rows, the different groups can be shown using separate convex hulls 

and concentration ellipses.  

In addition, the variables (columns, associations) can be plotted in the same coordinate system (Q 

mode), optionally including the column labels. If your data are 'well behaved', taxa typical for an 

association should plot in the vicinity of that association. 

  

 

Relay plot (NOT YET IN PAST 4): This is a composite diagram with one plot per column. The plots are 

ordered according to CA column scores. Each data point is plotted with CA first-axis row scores on 

the vertical axis, and the original data point value (abundance) in the given column on the horizontal 
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axis. This may be most useful when samples are in rows and taxa in columns. The relay plot will then 

show the taxa ordered according to their positions along the gradients, and for each taxon the 

corresponding plot should ideally show a unimodal peak, partly overlapping with the peak of the next 

taxon along the gradient (see Hennebert & Lees 1991 for an example from sedimentology).  

Missing data is supported by column average substitution. 

 

References 

Greenacre, M. 2010. Biplots in practice. Fundación BBVA, 237 pp. 

Hennebert, M. & A. Lees. 1991. Environmental gradients in carbonate sediments and rocks detected 

by correspondence analysis: examples from the Recent of Norway and the Dinantian of southwest 

England. Sedimentology 38:623-642. 

Legendre, P. & L. Legendre. 1998. Numerical Ecology, 2nd English ed. Elsevier, 853 pp. 

 

http://folk.uio.no/ohammer/past/ref.html
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Detrended correspondence analysis 

The Detrended Correspondence (DCA) module uses the same algorithm as Decorana (Hill & Gauch 

1980), with modifications according to Oxanen & Minchin (1997). It is specialized for use on 

'ecological' data sets with abundance data; samples in rows, taxa in columns. 

 

Eigenvalues for the four ordination axes are given as in CA, indicating their relative importance in 

explaining the spread in the data.  

Detrending is a sort of normalization procedure in two steps. The first step involves an attempt to 

'straighten out' points lying in an arch, which is a common occurrence. The second step involves 

'spreading out' the points to avoid clustering of the points at the edges of the plot. Detrending may 

seem an arbitrary procedure, but can be a useful aid in interpretation.  

Missing data is supported by column average substitution. 

 

References 

Hill, M.O. & H.G. Gauch Jr. 1980. Detrended Correspondence analysis: an improved ordination 

technique. Vegetatio 42:47-58. 

Oxanen, J. & P.R. Minchin. 1997. Instability of ordination results under changes in input data order: 

explanations and remedies. Journal of Vegetation Science 8:447-454. 

 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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Canonical correspondence 
Canonical Correspondence Analysis (Legendre & Legendre 1998) is correspondence analysis of a 

site/species matrix where each site has given values for one or more environmental variables 

(temperature, depth, grain size etc.). The ordination axes are linear combinations of the 

environmental variables. CCA is thus an example of direct gradient analysis, where the gradient in 

environmental variables is known a priori and the species abundances (or presence/absences) are 

considered to be a response to this gradient. 

Each site should occupy one row in the spreadsheet. The environmental variables should enter in the 

first columns, followed by the abundance data (the program will ask for the number of 

environmental variables). 

 

The implementation in PAST follows the eigenanalysis algorithm given in Legendre & Legendre 

(1998). The ordinations are given as site scores - fitted site scores are presently not available. 

Environmental variables are plotted as correlations with site scores. Both scalings (type 1 and 2) of 

Legendre & Legendre (1998) are available. Scaling 2 emphasizes relationships between species. 

Missing values are supported by column average substitution. 

Mystery rows: Rows can contain missing values (‘?’) for all environmental variables. These rows, 

which must be placed at the bottom of the data matrix, are not included in the CCA analysis itself, 

but their site scores are estimated using the CCA vectors and included in the biplot. This could be 

used, for example, when environmental variables are only known for a modern data set but not for 

“fossil” (downcore) samples. 

Reference 

Legendre, P. & L. Legendre. 1998. Numerical Ecology, 2nd English ed. Elsevier, 853 pp. 

 

http://folk.uio.no/ohammer/past/ref.html
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Seriation 

Seriation of an absence-presence (0/1) matrix using the algorithm described by Brower & Kile (1988). 
This method is typically applied to an association matrix with taxa (species) in the rows and samples 
in the columns. For constrained seriation (see below), columns should be ordered according to some 
criterion, normally stratigraphic level or position along a presumed faunal gradient.  

 

The seriation routines attempt to reorganize the data matrix such that the presences are 
concentrated along the diagonal. There are two algorithms: Constrained and unconstrained 
optimization. In constrained optimization, only the rows (taxa) are free to move. Given an ordering of 
the columns, this procedure finds the 'optimal' ordering of rows, that is, the ordering of taxa which 
gives the prettiest range plot. Also, in the constrained mode, the program runs a 'Monte Carlo' 
simulation, generating and seriating 30 random matrices with the same number of occurences within 
each taxon, and compares these to the original matrix to see if it is more informative than a random 
one (this procedure is time-consuming for large data sets).  

In the unconstrained mode, both rows and columns are free to move. 

Missing data are treated as absences. 

 

Reference 

Brower, J.C. & K.M. Kile. 1988. Seriation of an original data matrix as applied to palaeoecology. 
Lethaia 21:79-93. 
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CABFAC factor analysis 

This module implements the classical Imbrie & Kipp (1971) method of factor analysis and 
environmental regression (CABFAC and REGRESS, see also Klovan & Imbrie 1971).  

The program asks whether the first column contains environmental data. If not, a simple factor 
analysis with Varimax rotation will be computed on row-normalized data. 

If environmental data are included, the factors will be regressed onto the environmental variable 
using the second-order (parabolic) method of Imbrie & Kipp, with cross terms. PAST then reports the 
RMA regression of original environmental values against values reconstructed from the transfer 
function. Different methods for cross-validation (leave-one-out and k-fold) are available. You can also 
save the transfer function as a text file that can later be used for reconstruction of 
palaeoenvironment (see below). This file contains:  

• Number of taxa  
• Number of factors  
• Factor scores for each taxon  
• Number of regression coefficients  
• Regression coefficients (second- and first-order terms, and intercept) 

Missing values are supported by column average substitution. 

 

References 

Imbrie, J. & N.G. Kipp. 1971. A new micropaleontological method for quantitative paleoclimatology: 
Application to a late Pleistocene Caribbean core. In: The Late Cenozoic Glacial Ages, edited by K.K. 
Turekian, pp. 71-181, Yale Univ. Press, New Haven, CT.   

Klovan, J.E. & J. Imbrie. 1971. An algorithm and FORTRAN-IV program for large scale Q-mode factor 
analysis and calculation of factor scores. Mathematical Geology 3:61-77. 
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Discriminant analysis 

This module provides discriminant analysis for two or more groups (the latter is sometimes called 

Canonical Variates Analysis). The groups must be specified with a group column.  

A scatter plot of specimens along the first two canonical axes produces maximal and second to 

maximal separation between all groups. The axes are linear combinations of the original variables as 

in PCA, and eigenvalues indicate amount of variation explained by these axes. If only two groups are 

given, a histogram is plotted instead. 

Missing data supported by column average substitution. 

 

 

Classifier 

Classifies the data, assigning each point to the group that gives minimal Mahalanobis distance to the 

group mean. The Mahalanobis distance is calculated from the pooled within-group covariance 

matrix, giving a linear discriminant classifier. The given and estimated group assignments are listed 

for each point. In addition, group assignment is cross-validated by a leave-one-out cross-validation 

(jackknifing) procedure. 

Mystery specimens: Rows with unknown group, i.e. ‘?’ in the group column, are not included in the 

discriminant analysis itself, but will be classified. In this way, it is possible to classify new specimens 

that are not part of the training set. 
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Confusion matrix 

A table with the numbers of points in each given group (rows) that are assigned to the different 

groups (columns) by the classifier. Ideally each point should be assigned to its respective given group, 

giving a diagonal confusion matrix. Off-diagonal counts indicate the degree of failure of classification. 

 

Computational details 

Different softwares use different versions of CVA. The computations used by Past are given below.  

Let B be the given data, with n items in rows and k variates in columns, centered on the grand means 

of columns (column averages subtracted). Let g be the number of groups, ni the number of items in 

group i. Compute the gxk matrix X of weighted means of within group residuals, for group i and 

variate j 

ijiij n BX = , 

where 
ijB is a column average within group i. Compute B2 from B by centering within groups. Now 

compute W and the normalized, pooled, within-group covariance matrix Wcov: 

22BBW =   

WWcov
gn −

=
1

. 

e and U are the eigenvalues and eigenvectors of W; ec and Uc are the eigenvalues and eigenvectors of 

Wcov. Then, 

)1diag()1diag( eXUXUeZZ = . 

a and A are the eigenvalues and eigenvectors of Z’Z. We take only the first g-1 eigenvectors (columns 

of A), as the rest will be zero. The canonical variates are now 

( )AeUC c1diag= . 

The CVA scores are then BC. Reification of variables can be done along vectors WcovC. 
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Two-block PLS 

Two-block Partial Least squares can be seen as an ordination method comparable with PCA, but with 

the objective of maximizing covariance between two sets of variates on the same rows (specimens, 

sites). For example, morphometric and environmental data collected on the same specimens can be 

ordinated in order to study covariation between the two.  

The program will ask for the number of columns belonging to the first block. The remaining columns 

will be assigned to the second block. There are options for plotting PLS scores both within and across 

blocks, and PLS loadings.  

The algorithm follows Rohlf & Corti (2000). Permutation tests and biplots are not yet implemented. 

Partition the nxp data matrix Y into Y1 and Y2 (the two blocks), with p1 and p2 columns. The 

correlation or covariance matrix R of Y can then be partitioned as 









=

2221

1211

RR

RR
R . 

The algorithm proceeds by singular value decomposition of the matrix R12 of correlations across 

blocks: 

t

2112 DFFR = . 

The matrix D contains the singular values i along the diagonal. F1 contains the loadings for block 1, 

and F2 the loadings for block 2 (cf. PCA). 

The "Squared covar %" is a measure of the overall squared covariance between the two sets of 

variables, in percent relative to the maximum possible (all correlations equal to 1) (Rohlf & Corti p. 

741). The "% covar” of axes are the amounts of covariance explained by each PLS axis, in percents of 

the total covariance. They are calculated as 
 2

2

100
i

i




. 

Missing data supported by column average substitution. 

 

Reference 

Rohlf, F.J. & M. Corti. 2000. Use of two-block partial least squares to study covariation in shape. 
Systematic Biology 49:740-753. 

  

http://folk.uio.no/ohammer/past/ref.html
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Redundancy analysis (RDA) 
Redundancy Analysis (Legendre & Legendre 1998) takes as input a site/data matrix where each site 
has given values for one or more environmental/explanatory variables as well as a number of 
response (dependent) variables. The ordination axes are linear combinations of the explanatory 
(independent) variables. RDA can be thought of as a canonical version of PCA, i.e. with axes 
constrained by explanatory variables. 

Each site should occupy one row in the spreadsheet. The explanatory variables should enter in the 
first columns, followed by the response data (the program will ask for the number of explanatory 
variables). 

The implementation in PAST follows Legendre & Legendre (1998). The ordinations can be shown as 
site scores or fitted site scores. Explanatory variables are plotted as correlations with site scores. 
Both scalings (type 1 and 2) of Legendre & Legendre (1998) are available. The scores can be manually 
scaled with the “Amplitude” controls for a clearer plot (these factors should be reported together 
with the plot). 

Missing values are supported by column average substitution. 

Mystery rows: Rows can contain missing values (‘?’) for all explanatory variables. These rows, which 
must be placed at the bottom of the data matrix, are not included in the RDA analysis itself, but their 
site scores are estimated using the RDA vectors and included in the biplot. This could be used, for 
example, when explanatory variables are only known for a modern data set but not for “fossil” 
(downcore) samples. Mystery rows are only reported for unfitted site scores. 

Reference 

Legendre, P. & L. Legendre. 1998. Numerical Ecology, 2nd English ed. Elsevier, 853 pp 
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Nonlinear ordination (UMAP) 
PAST includes three methods for nonlinear ordination (embedding): spectral embedding, UMAP, and 
ISOMAP. The first two are found in the UMAP module, the last in the ISOMAP module. These 
methods can be compared with e.g. Principal Coordinates Analysis, and are based on a distance 
measure. However, they can pick up groups having complicated shapes in high-dimensional space, 
possibly interfingering with other groups. These methods can be very good at identifying groups and 
gradients (often “too good”, causing overfitting), but can also behave quite erratically, depending on 
analysis parameters. 

The input is a multivariate data set with variables in columns, optionally with a group column for 
showing given groups (this does not influence the ordination). A distance measure must be chosen 
(default Euclidean). 

 

Spectral embedding 

The spectral embedding algorithm basically follows Belkin & Niyogi (2003). First, a graph is 
constructed where two points i and j are connected if and only if i is among the n nearest neighbours 
of j, or j is among the n nearest neighbours of i. The number n can be chosen by the user (“Embed 
neighbors”), and it can substantially influence the ordination. Larger n will tend to produce larger, 
less concentrated groups. 

A matrix W is constructed, with Wij=1 if i and j are connected (adjacency matrix). If the “Embed 
kernel” option is selected, the values in this matrix are additionally scaled by the kernel function 

𝑊𝑖𝑗 = 𝑒
‖𝑥𝑖−𝑥𝑗‖

2

𝑡  

where the norm is according to the selected distance measure. The parameter t is fixed at 1/50 of 
the largest distance between any pairs of points. Then compute the “graph Laplacian” L = D – W, 
where D is a diagonal matrix containing the row (or column, as W is symmetric) sums of W. Past uses 
the normalized graph Laplacian, 

L′ = D−
1
2LD−

1
2 
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The scores on the two ordination axes are given by the two eigenvectors corresponding to the 
second smallest and third smallest eigenvalue. 

UMAP 

UMAP (McInnes et al. 2018) is a modern method for nonlinear ordination. The implementation in 
Past also builds on a description by Oskolkov (2019). The procedure is complex, for details see the 
references. 

The implementation in Past uses a spectral embedding as starting condition, with parameters as 
given above. The “UMAP neighbors” (k) and the “Minimum distance” (min_dist) parameters can 
change the ordination quite a lot. 

References 

Belkin, M., Niyogi, P. 2003. Laplacian eigenmaps for dimensionality reduction and data 
representation. Neural Computation 15:1373-1396. 

McInnes, L., Healy, J., Melville, J. 2018. UMAP: Uniform Manifold Approximation and Projection for 
dimension reduction. https://arxiv.org/abs/1802.03426. 

Oskolkov, N. 2019. How to program UMAP from scratch. https://towardsdatascience.com/how-to-
program-umap-from-scratch-e6eff67f55fe 

  

https://towardsdatascience.com/how-to-program-umap-from-scratch-e6eff67f55fe
https://towardsdatascience.com/how-to-program-umap-from-scratch-e6eff67f55fe
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Nonlinear ordination (ISOMAP) 
ISOMAP (Tenenbaum et al. 2000) is a relatively simple but often effective method for nonlinear 
dimensionality reduction. The implementation in Past follows these steps: 

1. Find the k closest neighbors of each point, using any distance measure. The result will 
strongly depend on the value of k, which must be specified by the user. 

2. Produce a graph where two vertices are connected if they are among their closest neighbors. 
3. Find the shortest paths between all vertices in the graph using the Floyd-Warshall algorithm. 

These path lengths represent “geodesic” distances along the manifold. 
4. Compute a standard PCoA (metric multidimensional scaling) on the geodesic distances. 

 

Reference  

Tenenbaum, J.B., de Silva, V., Langford, J.C. 2000. A global geometric framework for nonlinear 
dimensionality reduction. Science 290:2319-2323. 
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Classical cluster analysis 

The hierarchical clustering routine produces a 'dendrogram' showing how data points (rows) can be 
clustered. For 'R' mode clustering, putting weight on groupings of taxa, taxa should go in rows. It is 
also possible to find groupings of variables or associations (Q mode), by entering taxa in columns. 
Switching between the two is done by transposing the matrix (in the Edit menu). 

 

Three different algorithms are available:  

• Unweighted pair-group average (UPGMA). Clusters are joined based on the average distance 
between all members in the two groups.  

• Single linkage (nearest neighbor). Clusters are joined based on the smallest distance between 
the two groups.  

• Ward's method. Clusters are joined such that increase in within-group variance is minimized. 

• Complete linkage. Clusters are joined based on the largest distance within groups. 
 

One method is not necessarily better than the other, though single linkage is not recommended by 

some. It can be useful to compare the dendrograms given by the different algorithms, to informally 

assess the robustness of the clusters. 

For Ward's method, a Euclidean distance measure is inherent to the algorithm. For the other 

methods, the distance matrix can be computed using 24 different indices, as described under the 

‘Similarity and distance indices’ section. 

Missing data: The cluster analysis algorithm can handle missing data, coded with question marks (?). 

This is done using pairwise deletion, meaning that when distance is calculated between two points, 

any variables that are missing are ignored in the calculation. For Raup-Crick, missing values are 

treated as absence. Missing data are not supported for Ward's method, nor for the Rho similarity 

measure.  
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Two-way clustering: The two-way option allows simultaneous clustering in R-mode and Q-mode.  

Stratigraphically constrained clustering: This option will allow only adjacent rows or groups of rows 

to be joined during the agglomerative clustering procedure. May produce strange-looking (but 

correct) dendrograms.  

Group-constrained clustering: This option will only allow joining of clusters within the given groups. 

May produce strange-looking (but correct) dendrograms. 

Bootstrapping: If a number of bootstrap replicates is given (e.g. 100), the columns are subjected to 

resampling. Press Enter after typing to update the value in the “Boot N” number box. The percentage 

of replicates where each node is still supported is given on the dendrogram. 

Note on Ward’s method: PAST produces Ward’s dendrograms identical to those made by Stata, but 

somewhat different from those produced by Statistica. The reason for the discrepancy is unknown. 

Constrained clustering does not work. 
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Neighbour joining 
Neigbour joining clustering (Saitou & Nei 1987) is an alternative method for hierarchical cluster 

analysis. The method was originally developed for phylogenetic analysis, but may be superior to 

UPGMA also for ecological data. In contrast with UPGMA, two branches from the same internal node 

do not need to have equal branch lengths. A phylogram (unrooted dendrogram with proportional 

branch lengths) is given.  

 

Distance indices and bootstrapping are as for other cluster analysis (above). To run the bootstrap 

analysis, type in the number of required bootstratp replicates (e.g. 1000, 10000) in the “Boot N” box 

and press Enter to update the value. 

Negative branch lengths are forced to zero, and transferred to the adjacent branch according to 

Kuhner & Felsenstein (1994).  

The tree is by default rooted on the last branch added during tree construction (this is not midpoint 

rooting). Optionally, the tree can be rooted on any row in the data matrix, as selected in the Root 

menu. 

Missing data supported by pairwise deletion. 

 

References 

Kuhner, M.K. & J. Felsenstein. 1994. A simulation comparison of phylogeny algorithms under equal 
and unequal evolutionary rates. Molecular Biology and Evolution 11:459-468 

Saitou, N. & M. Nei. 1987. The neighbor-joining method: a new method for reconstructing 
phylogenetic trees. Molecular Biology and Evolution 4:406-425. 

 

http://folk.uio.no/ohammer/past/ref.html
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K-means clustering 

K-means clustering (e.g. Bow 1984) is a non-hierarchical clustering method. The number of clusters 

to use is specified by the user, usually according to some hypothesis such as there being two sexes, 

four geographical regions or three species in the data set. 

The cluster assignments are initially random, using the Forgy method. In an iterative procedure, 

items are then moved to the cluster which has the closest cluster mean, and the cluster means are 

updated accordingly. This continues until items are no longer "jumping" to other clusters. The result 

of the clustering is to some extent dependent upon the initial, random ordering, and cluster 

assignments may therefore differ from run to run. This is not a bug, but normal behaviour in k-means 

clustering.  

The cluster assignments may be copied and pasted back into the main spreadsheet, and 

corresponding colors (symbols) assigned to the items using the 'Numbers to colors' option in the Edit 

menu. 

Clustering statistics 

WGSS: The Within-Group (or Within-Cluster) sum of squares; will decrease with cluster 

separationand with the number of clusters. 

F: Ratio of Between-Group to Within-Group sum of squares; will increase with cluster separation and 

number of clusters. 

Variance explained (percent): Ratio of Between-Group to total sum of squares, multiplied with 100. 

Average silhouette: The average silhouette value over all objects (see below). 

Silhouette plot and table 

The silhouette plot (Rousseeuw 1987) gives an indication of how well each object has been classified, 

on a scale from -1 to 1, where 1 means a perfectly appropriate assignment to a cluster; -1 means the 

object would have been better placed in another cluster; 0 means the object is on the boundary 

between two clusters. 

Missing data supported by column average substitution. 

 

References 

Bow, S.-T. 1984. Pattern recognition. Marcel Dekker, New York. 

Rousseeuw, P.J. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster 
analysis". Computational and Applied Mathematics 20:53–65.  

  

http://folk.uio.no/ohammer/past/ref.html
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K-medoids clustering 
K-medoids clustering (Kaufman & Rousseeuw 1990) can be compared to k-means clustering, and 
requires the user to select the number of clusters. Unlike k-means, the clusters are centered on a 
point in the data set, rather than a cluster mean. Also, importantly, k-medoids allows any distance 
measure to be used, making it useful for e.g. ecological and genetic data. 

The algorithm in Past follows the original PAM method described by Kaufman & Rousseeuw (1990). 

Reference 

Kaufman, L. & Rousseeuw, P.J. 1990. Partitioning around medoids (program PAM). Ch. 2 in Finding 
groups in data: An introduction to cluster analysis. John Wiley & Sons. 

 

DBSCAN clustering 
DBSCAN clustering (Ester et al. 1996) is a non-hierarchical clustering method. Unlike K-means or K-
medoids, the number of clusters does not need to be pre-defined. Any distance measure can be 
used. DBSCAN is a popular clustering method in the machine learning community. It does not always 
perform better than K-medoids but can trace out non-linear cluster boundaries. 

The “MinPts” parameter is the minimum number of points required to form a dense region. By 
default it is set to the number of data dimensions dim*2, or N/4, whichever is smaller. It may be 
increased for large or noisy data sets. 

The “Epsilon” parameter is the neighborhood radius. By default, it is set to 0.1 times the maximal 
pairwise distance in the data set. The value can be optimized using the K-distance graph. 

In the output table, cluster assignment is indicated by a positive integer. The value -1 indicates a 
“noise point” that is not be assigned to any group. 

K-distance graph: This graph shows the distance from each point to its MinPts-1 nearest neighbor, 
sorted from smallest to largest. You should look for a break in the slope of this curve. The 
corresponding “K-distance” may be used as a value for the parameter Epsilon. 

Reference 

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. 1996. A density-based algorithm for discovering clusters in 
large spatial databases with noise. Proceedings of the Second International Conference on Knowledge 
Discovery and Data Mining (KDD-96), 226–231. 

 

K-nearest neighbors classifier 
K-nearest neighbours (Fix & Hodges 1951) is a simple but effective supervised machine learning 
algorithm. A multivariate data set with a group column is supplied, where one part (the training set) 
is assigned to groups, while the other part (the test set) has queigenestion marks in the group 
column. The rows in the test set are then assigned to groups (classification) according to their 
similarity with rows in the training set. Any distance measure can be used. 

For each test row, the group is selected by a majority vote among the nearest k neighbors. The value 
of k is a parameter selected by the user. Small k may lead to overfitting, while large k may lead to 
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oversmoothing. In addition, each vote among the nearest neighbors may be weighted according to 
distance d from the test point. Four weighting schemes are available in Past: 

• No weighting. This is usually a poor choice (Gou et al. 2012) but is included for comparison. 

• Inverse weighting, w = 1/d. This is the default weighting in some programs, but it is usually 
not optimal. 

• Linear weighting (Dudani 1976) is a standard weighting that usually performs well: 

𝑤 =
𝑑𝑚𝑎𝑥 − 𝑑

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
 

 

• Weighting due to Gou et al. (2012), a modification of linear weighting that can perform 
slightly better: 

𝑤 =
𝑑𝑚𝑎𝑥 − 𝑑

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
×

𝑑𝑚𝑎𝑥 + 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 + 𝑑
 

Jackknifing 

Past automatically performs a jackknifing (cross-validation) procedure on the training set. One row is 
removed from the training set at a time and classified using the remaining training data. The 
percentage of correctly classified rows is reported. This may be used to indicate good choices for k 
and weighting. 

 

References 

Dudani, S.A. 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, 
Man, and Cybernetics 6:325-327. 

Fix, E. Hodges, J.L. 1951. Discriminatory analysis, nonparametric discrimination: consistency 
properties. Technical Report No. 4, USAF School of Aviation Medicine, Randolf Field Texas, 238–247. 

Gou, J., Du, L., Zhang, Y., Xiong, T. 2012. A new distance-weighted k-nearest neighbor classifier. 
Journal of Information & Computational Science 9:1429–1436 

 

Naïve Bayes classifier 
Naïve Bayes (Hand & Yu 2001) is a simple supervised machine learning algorithm, like k-nearest 
neighbors. A multivariate data set with a group column is supplied, where one part (the training set) 
is assigned to groups, while the other part (the test set) has question marks in the group column. The 
rows in the test set are then assigned to groups (classification) according to their similarity with rows 
in the training set. Any distance measure can be used. 

Jackknifing cross-validation is implemented as for K-nearest neighbors. 

Reference 

Hand, D.J., Yu, K. 2001. Idiot’s Bayes – not so stupid after all? International Statistical Review 69:385–
398.  
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Parsimony (cladistic) 
Warning: the cladistics package in PAST is fully operational, but lacking in comprehensive 
functionality. The PAST cladistics package is adequate for education and initial data exploration, but 
for more ‘serious’ work we recommend a specialized program for systematics (Paup, TNT etc.). 

The module requires a character matrix with taxa in rows, outgroup in first row. 

Algorithms are from Kitching et al. (1998) and Felsenstein (2004). 

Character states should be coded using integers in the range 0 to 255, or with the letters c, a, g, t, u 
(upper or lower case). The first taxon is treated as the outgroup, and will be placed at the root of the 
tree. 

Missing values are coded with a question mark (?). Please note that PAST does not collapse zero-
length branches. Because of this, missing values can lead to a proliferation of equally shortest trees 
ad nauseam, many of which are in fact equivalent. 

Algorithms 

There are four algorithms available for finding short trees: 

Exhaustive 

The exhaustive algorithm evaluates all possible trees. Like the branch-and-bound algorithm it will 
necessarily find all shortest trees, but it is very slow. The maximum number of taxa allowed for 
exhaustive search is 12, for which more than 600 million trees are evaluated. The only advantage 
over branch-and-bound is the plotting of tree length distribution. This histogram may indicate the 
‘quality’ of your matrix, in the sense that there should be a tail to the left such that few short trees 
are ‘isolated’ from the greater mass of longer trees (but see Kitching et al. 1998 for critical comments 
on this). 

Branch-and-bound 

The branch-and-bound algorithm is guaranteed to find all shortest trees. The total number of 
shortest trees is reported, but a maximum of 10000 trees are saved. The branch-and-bound 
algorithm can be very time consuming for data sets with more than 16 taxa. 

Heuristic, nearest neighbour interchange 

This heuristic algorithm adds taxa sequentially in the order they are given in the matrix, to the branch 
where they will give least increase in tree length. After each taxon is added, all nearest neighbour 
trees are swapped to try to find an even shorter tree. 

Like all heuristic searches, this one is much faster than the algorithms above and can be used for 
large numbers of taxa, but is not guaranteed to find all or any of the most parsimonious trees. To 
decrease the likelihood of ending up on a suboptimal local minimum, a number of reorderings can be 
specified. For each reordering, the order of input taxa will be randomly permuted and another 
heuristic search attempted. 

Please note: Because of the random reordering, the trees found by the heuristic searches will 
normally be different each time. To reproduce a search exactly, you will have to start the parsimony 
module again from the menu, using the same value for “Random seed”. This will reset the random 
number generator to the seed value. 
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Heuristic, subtree pruning and regrafting 

This algorithm (SPR) is similar to the one above (NNI), but with a more elaborate branch swapping 
scheme: A subtree is cut off the tree, and regrafting onto all other branches in the tree is attempted 
in order to find a shorter tree. This is done after each taxon has been added, and for all possible 
subtrees. While slower than NNI, SPR will often find shorter trees. 

Heuristic, tree bisection and reconnection 

This algorithm (TBR) is similar to the one above (SPR), but with an even more complete branch 
swapping scheme. The tree is divided into two parts, and these are reconnected through every 
possible pair of branches in order to find a shorter tree. This is done after each taxon is added, and 
for all possible divisions of the tree. TBR will often find shorter trees than SPR and NNI, at the cost of 
longer computation time. 

 

Character types 

Unordered 

Characters are reversible and unordered, meaning that all changes have equal cost. This is the 
criterion with fewest assumptions and is therefore generally preferable. 

Ordered 

Characters are reversible and ordered, meaning that 0->2 costs more than 0->1, but has the same 
cost as 2->0. 

 

Bootstrap 

Bootstrapping is performed when the ‘Bootstrap replicates’ value is set to non-zero. The specified 
number of replicates (typically 100 or even 1000) of your character matrix are made, each with 
randomly weighted characters. The bootstrap value for a group is the percentage of replicates 
supporting that group. A replicate supports the group if the group exists in the majority rule 
consensus tree of the shortest trees made from the replicate. 

Warning: Specifying 1000 bootstrap replicates will clearly give a thousand times longer computation 
time than no bootstrap! Exhaustive search with bootstrapping is unrealistic and is not allowed. 

 

Cladogram plotting 

All shortest (most parsimonious) trees can be viewed, up to a maximum of 10000 trees. If 
bootstrapping has been performed, a bootstrap value is given at the root of the subtree specifying 
each group. 

Character states can also be plotted onto the tree, as selected by the ‘Character’ menu. This 
character reconstruction is unique only in the absence of homoplasy. In case of homoplasy, character 
changes are placed as close to the root as possible, favouring one-time acquisition and later reversal 
of a character state over several independent gains (so-called accelerated transformation). 
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The ‘Phylogram’ option allows plotting of trees where the length of vertical lines (joining clades) is 
proportional to branch length. 

Consistency index 

The per-character consistency index (ci) is defined as m/s, where m is the minimum possible number 
of character changes (steps) on any tree, and s is the actual number of steps on the current tree. This 
index hence varies from one (no homoplasy) and down towards zero (a lot of homoplasy). The 
ensemble consistency index CI is a similar index summed over all characters. 

Retention index 

The per-character retention index (ri) is defined as (g-s)/(g-m), where m and s are as for the 
consistency index, while g is the maximal number of steps for the character on any cladogram (Farris 
1989). The retention index measures the synapomorphy on the tree and varies from 0 to 1. 

Note that in the present version, the retention index is only correctly calculated when using 
unordered characters. 

Consensus tree 

The consensus tree of all shortest (most parsimonious) trees can also be viewed. Two consensus 
rules are implemented: Strict (groups must be supported by all trees) and majority (groups must be 
supported by more than 50% of the trees). 

Bremer support (decay index) 

The Bremer support for a clade is the number of extra steps you need to construct a tree (consistent 
with the characters) where that clade is no longer present. There are reasons to prefer this index 
rather than the bootstrap value. PAST does not compute Bremer supports directly, but for smaller 
data sets it can be done ‘manually’ as follows: 

• Perform parsimony analysis with exhaustive search or branch-and-bound. Take note of the 
clades and the length N of the shortest tree(s) (for example 42). If there are more than one 
shortest tree, look at the strict consensus tree. Clades which are no longer found in the 
consensus tree have a Bremer support value of 0. 

• In the box for ‘Longest tree kept’, enter the number N+1 (43 in our example) and perform a 
new search. 

• Additional clades which are no longer found in the strict consensus tree have a Bremer 
support value of 1. 

• For ‘Longest tree kept’, enter the number N+2 (44) and perform a new search. Clades which 
now disappear in the consensus tree have a Bremer support value of 2. 

• Continue until all clades have disappeared. 

References 

Farris, J.S. 1989. The retention index and the rescaled consistency index. Cladistics 5:417-419. 

Felsenstein, J. 2004. Inferring phylogenies. Sinauer Associates. 

Kitching, I.J., P.L. Forey, C.J. Humphries & D.M. Williams. 1998. Cladistics. Oxford University Press.  
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Phylogenetically independent contrasts 
Phylogenetically independent contrasts (Felsenstein 1985; Garland et al. 1992) is a method for 
removing phylogenetic information from a character dataset, e.g. morphometric data. The purpose 
of this is to reduce the phylogenetic interdependence of data points, which can violate the 
assumptions of many statistical tests. 

The module requires one or more columns of character data. In addition, the “tree collection” in Past 
must contain one or more trees. The taxon names in the trees must match the row names in the 
spreadsheet. 

 

References 

Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:1-15.  

Garland Jr., T., Harvey, P.H., Ives, A.R. 1992. Procedures for the analysis of comparative data using 
phylogenetically independent contrasts. Systematic Biology 41:18-32. 

  

  



136 

 

Phylogenetic generalized least squares (PGLS) 
Bivariate linear regression (for two data columns), taking into account the expected phylogenetic 
covariation from a Brownian model for evolution (Grafen 1989; Pagel 1999; Symonds & Blomberg 
2014). 

The “tree collection” in Past must contain one or more trees with branch lengths (otherwise, branch 
lengths of 1 are assumed). The taxon names in the trees must match the row names in the 
spreadsheet. IMPORTANT: The first row in the data is not used, as it is assumed to refer to an 
outgroup. This (dummy) outgroup must be included in the tree – the branch length below the 
outgroup is not used. This is to ensure compatibility with the parsimony trees generated by Past, 
which are always rooted on the first row. 

Standard errors on regression parameters are calculated according to Smaers & Rohlf (2016). 

The PGLS var-covar matrix is transformed according to the parameter lambda (Symonds & Blomberg 
2014), which can be selected as 0 (equivalent to OLS regression if the tree is ultrametric; a weighted 
OLS otherwise), or 1 (full PGLS) or the maximum-likelihood estimate based on regression residuals 
(Revell 2010). 

The maximum-likelihood estimates for lambda (and their optimization profiles) are calculated for the 
first data column only (x), the second data column only (y), a combination of x and y (Freckleton et al. 
2002) or the regression residuals (Revell 2010). 

 

References 

Freckleton, R.P., Harvey, P.H., Pagel, M. 2002. Phylogenetic analysis and comparative data: A test and 
review of evidence. American Naturalist 160:712-726. 

Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society B 
326:119–157. 

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877–884. 

Revell, L.J. 2010. Phylogenetic signal and linear regression on species data. Methods in Ecology & 
Evolution 1:319–329. 

Smaers, J.B., Rohlf, F.J. 2016. Testing species' deviation from allometric predictions using the 
phylogenetic regression. Evolution 70:1145–1149. 

Symonds, M.R.E., Blomberg, S.P. 2014. A primer on phylogenetic least squares. Pp. 105-130 in: L. Z. 
Garamszegi (ed.), Modern Phylogenetic Comparative Methods and their Application in Evolutionary 
Biology. Springer-Verlag. 
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Multivariate normality 

Multivariate normality is assumed by a number of multivariate tests. PAST computes Mardia's 

multivariate skewness and kurtosis, with tests based on chi-squared (skewness) and normal (kurtosis) 

distributions. A powerful omnibus (overall) test due to Doornik & Hansen (1994) is also given. If at 

least one of these tests show departure from normality (small p value), the distribution is 

significantly non-normal. Sample size should be reasonably large (>50), although a small-sample 

correction is also attempted for the skewness test. 

 

 

Missing data supported by column average substitution. 

 

References 

Doornik, J.A. & H. Hansen. 1994. An omnibus test for univariate and multivariate normality. W4&91 

in Nuffield Economics Working Papers. 

Mardia, K.V. 1970. Measures of multivariate skewness and kurtosis with applications. Biometrika 

36:519-530. 

 

http://www.doornik.com/research/normal2.pdf
http://www.doornik.com/research/normal2.pdf
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Box’s M 
Test for the equivalence of the covariance matrices for two multivariate samples marked with a 

group column. This is a test for homoscedasticity, as assumed by MANOVA. You can use either two 

original multivariate samples from which the covariance matrices are automatically computed, or 

two specified variance-covariance matrices. In the latter case, you must also specify the sizes 

(number of individuals) of the two samples.  

 

The Box's M statistic is given together with a significance value based on a chi-square approximation. 

Note that this test is supposedly very sensitive. This means that a high p value will be a good, 

although informal, indicator of equality, while a highly significant result (low p value) may in practical 

terms be a somewhat too sensitive indicator of inequality. 

The statistic is computed as follows – note this equals the “-2 ln M” of some texts (Rencher 2002).  

( ) ( ) ( ) 21 SSS ln1ln1ln2 21 −−−−−= nnnM , 

where S1 and S2 are the covariance matrices, S is the pooled covariance matrix, n=n1+n2 and |•| 

denotes the determinant. 

The Monte Carlo test is based on 999 random permutations. 

Missing data supported by column average substitution. 

 

Reference 

Rencher, A.C. 2002. Methods of multivariate analysis, 2nd ed. Wiley. 
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MANOVA 

One-way MANOVA (Multivariate ANalysis Of VAriance) is the multivariate version of the univariate 

ANOVA, testing whether two or more groups (specified with a group column) have the same 

multivariate mean.  

 

Two statistics are provided: Wilk's lambda with its associated Rao's F and the Pillai trace with it's 

approximated F. Wilk's lambda is probably more commonly used, but the Pillai trace may be more 

robust.  

Number of constraints: For correct calculation of the p values, the number of dependent variables 

(constraints) must be specified. It should normally be left at 0, but for Procrustes fitted landmark 

data use 4 (for 2D) or 6 (for 3D).  

Pairwise comparisons (post-hoc): If the MANOVA shows significant overall difference between 

groups, the analysis can proceed by pairwise comparisons. In PAST, the post-hoc analysis is simple, by 

pairwise Hotelling's tests. The following values can be displayed in the table: 

• Hotelling's p values, not corrected for multiple testing. Marked in pink if significant (p<0.05). 

• The same p values, but significance (pink) assessed using the sequential Bonferroni scheme. 

• Bonferroni corrected p values (multiplied by the number of pairwise comparisons). The 
Bonferroni correction gives very little power. 

• Squared Mahalanobis distances. 

Note: These pairwise comparisons use the within-group covariance matrix pooled over all groups 

participating in the MANOVA. They may therefore give slightly other results than if only two of the 

groups are selected for analysis. 

Missing data supported by column average substitution. 
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One-way ANOSIM 

ANOSIM (ANalysis Of Similarities) is a non-parametric test of significant difference between two or 

more groups, based on any distance measure (Clarke 1993). The distances are converted to ranks. 

ANOSIM is normally used for taxa-in-samples data, where groups of samples are to be compared. 

Items go in rows, variates in columns, and groups should be specified with a group column as usual. 

 

In a rough analogy with ANOVA, the test is based on comparing distances between groups with 

distances within groups. Let rb be the mean rank of all distances between groups, and rw the mean 

rank of all distances within groups. The test statistic R is then defined as   

( ) 41−

−
=

NN

rr
R wb . 

Large positive R (up to 1) signifies dissimilarity between groups. The one-tailed significance is 

computed by permutation of group membership, with 9,999 replicates (can be changed).  

Pairwise ANOSIMs between all pairs of groups are provided as a post-hoc test. Significant 

comparisons (at p<0.05) are shown in pink. The optional Bonferroni correction multiplies the p values 

with the number of comparisons. This correction is very conservative (produces large p values). The 

sequential Bonferroni option does not output corrected p values, but significance is decided based 

on step-down sequential Bonferroni, which is slightly more powerful than simple Bonferroni. 

Missing data supported by pairwise deletion (not for the Raup-Crick, Rho and user-defined indices). 

Reference 

Clarke, K.R. 1993. Non-parametric multivariate analysis of changes in community structure. 
Australian Journal of Ecology 18:117-143. 

http://folk.uio.no/ohammer/past/ref.html
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One-way PERMANOVA 

PerMANOVA (Permutational MANOVA, also known as NPMANOVA) is a non-parametric test of 

significant difference between two or more groups, based on any distance measure (Anderson 2001). 

PerMANOVA is normally used for ecological taxa-in-samples data, where groups of samples are to be 

compared, but may also be used as a general non-parametric MANOVA.  

Items go in rows, variates in columns, and groups should be specified with a group column. 

 

PerMANOVA calculates an F value in analogy with ANOVA. In fact, for univariate data sets and the 

Euclidean distance measure, PerMANOVA is equivalent to ANOVA and gives the same F value. 

The significance is computed by permutation of group membership, with 9,999 replicates (can be 

changed by the user). 

 

Repeated measures 

A repeated measures (blocked) ANOVA is carried out with the “Repeated measures” box is ticked. In 

this case, each group must have the same number of rows, and all the rows in each group must be 

consecutive. The first row in each group is then assumed to belong to the first subject (block), the 

second row in each group belongs to the second subject, etc. The calculations are analogous to the 

univariate repeated measures ANOVA. First, the within-subjects sum of squares SSws is calculated in 

the same way as the within-group sum of squares above, but with terms taken only when I and j are 

within the same subject. The between-subjects sum of squares is then SSbs = SST – SSws. Finally, the 

error sum of squares SSerr = SSwg – SSbs. The F value is calculated as described for the several- sample 

repeated-measures tests in the Univariate menu. 

The permutations for the p value are carried out only within subjects. 

 

 

http://folk.uio.no/ohammer/past/ref.html
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Pairwise tests 

Pairwise PerMANOVAs between all pairs of groups are provided as a post-hoc test. Significant 

comparisons (at p<0.05) are shown in pink. The Bonferroni correction shown in the upper triangle of 

the matrix multiplies the p values with the number of comparisons. This correction is very 

conservative (produces large p values). 

Missing data supported by pairwise deletion. 

 

Reference 

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral 
Ecology 26:32-46. 
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Two-way ANOSIM 

The two-way ANOSIM in PAST uses the crossed design (Clarke 1993). For more information see one-

way ANOSIM, but two group columns are required. There must be several rows (replication) for each 

combination of group levels. 

Reference 

Clarke, K.R. 1993. Non-parametric multivariate analysis of changes in community structure. 

Australian Journal of Ecology 18:117-143. 

 

Two-way ANOSIM without replication 
Input data as for two-way ANOSIM above, i.e. two group columns are required. There must be 
exactly one row (no replication) for each combination of group levels. 

Reference 

Clarke, K.R. & Warwick, R.M. 1994. Similarity-based testing for community pattern: the two-way 
layout with no replication. Marine Biology 118:167-176. 

 

Two-way PERMANOVA 

The two-way NPMANOVA (Anderson, 2001) in PAST uses the crossed design. The algorithm follows 
Anderson (2001) with a modification to allow unbalanced designs (each combination of factors can 
contain different numbers of values). For more information see one-way NPMANOVA, but two group 
columns are required (as for two-way ANOSIM). 

Reference 

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral 
Ecology 26:32-46. 

 

  

http://folk.uio.no/ohammer/past/ref.html
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Test for multivariate dispersion (PERMDISP) 
Tests for equal dispersion (“spread”) in two or more groups of multivariate data (PERMDISP; 
Anderson 2005). 

The procedure starts from a standard Principal Coordinates Analysis of the complete data set (all 
groups), using the selected distance measure. In the PCoA space, calculate the Euclidean distance zi 
from each point i to its group centroid. These distances are subjected to a standard one-way, 
univariate ANOVA. The significance (p value) is estimated by a permutation test. 

PAST also includes pairwise tests across groups. These tests are based on the original PCoA of the 
complete data set (not PCoA on the reduced data set with only two groups). 

A box plot of dispersions is provided, showing the z values for each group. 

 

Reference 

Anderson, M.J. 2005. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 
62:245-253.  
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Mantel test and partial Mantel test 

The Mantel test (Mantel 1967, Mantel & Valand 1970) is a permutation test for correlation between 
two distance or similarity matrices. In PAST, these matrices can also be computed automatically from 
two sets of original data. The first matrix must be above the second matrix in the spreadsheet, and 
the rows be specified as two groups (with a group column). The two matrices must have the same 
number of rows. If they are distance or similarity matrices, they must also have the same number of 
columns. 

The R value is simply the Pearson’s correlation coefficient between all the entries in the two matrices 

(because the matrices are symmetric it is only necessary to correlate the lower triangles). It ranges 

from -1 to +1. The permutation test compares the original R to R computed in e.g. 9999 random 

permutations. The reported p value is one-tailed. 

In the example below, the first matrix (gpa) consists of Procrustes-fitted landmark coordinates from 

primate skulls, while the second matrix (seq) contains sequence data from the same primates. The 

user has selected the Euclidean measure for the first matrix, and Jukes-Cantor for the second. The 

two data sets seem to be negatively correlated (R=-0.19), and there is no significant positive 

correlation (the test is one-tailed). In other words, there is no correlation between morphology and 

genetics. 
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Partial Mantel test 

It is possible to add a third matrix C below the two matrices A and B as described above. This matrix 

must be marked as above, and contain the same number of rows as A and B. A separate similarity 

measure can then be selected for this matrix. If such a third matrix is included, the program will carry 

out a partial Mantel test for the correlation of A and B, controlling for similarities given in C 

(Legendre & Legendre 1998). Only matrix A is permutated, and the R value is computed as 

( )
( ) ( ) ( )

( ) ( )22
11 BCAC

BCACAB
CAB

RR

RRR
R

−−

−
=•  

where R(AB) is the correlation coefficient between A and B. 

 

References 

Legendre, P. & L. Legendre. 1998. Numerical Ecology, 2nd English ed. Elsevier, 853 pp. 

Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer 
Research 27:209-220. 
  
Mantel, N. & R.S. Valand 1970. A technique of nonparametric multivariate analysis. Biometrics 
26:547-558. 
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SIMPER 
SIMPER (Similarity Percentage) is a simple method for assessing which taxa are primarily responsible 

for an observed difference between groups of samples (Clarke 1993). The overall significance of the 

difference is often assessed by ANOSIM. The Bray-Curtis similarity measure (multiplied with 100) is 

most commonly used with SIMPER, but the Euclidean, cosine and chord measures can also be used. 

If more than two groups are selected, you can either compare two groups (pairwise) by choosing 

from the lists of groups, or you can pool all samples to perform one overall multi-group SIMPER. In 

the latter case, all possible pairs of samples are compared using the Bray-Curtis measure. The overall 

average dissimilarity is computed using all the taxa, while the taxon-specific dissimilarities are 

computed for each taxon individually. 

 

 

Samples go in rows, grouped with a group column, and taxa in columns. In the output table, taxa are 
sorted in descending order of contribution to group difference. The last three columns show the 
mean abundance in each of the groups. 

Missing data supported by column average substitution. 

 

Reference 

Clarke, K.R. 1993. Non-parametric multivariate analysis of changes in community structure. 
Australian Journal of Ecology 18:117-143. 

  

http://folk.uio.no/ohammer/past/ref.html
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Indicator species analysis (IndVal) 
An alternative to SIMPER for identifying species indicative of given groups of sites (Dufrene & 
Legendre 1997). Requires abundances (counts) with samples (sites) in rows, taxa in columns. Also a 
group column with at least two groups specified. 

For each species i in group j, define the specificity as 

𝐴𝑖𝑗 = 𝑁𝑖𝑗 𝑁𝑖⁄  

where Nij is the mean number of individuals of species i across sites in group j, and Ni is the sum of 
the mean numbers of individuals of species i over all groups. 

Similarly, define the fidelity as 

𝐵𝑖𝑗 = 𝑁𝑠𝑖𝑡𝑒𝑠𝑖𝑗 𝑁𝑠𝑖𝑡𝑒𝑠𝑗⁄  

where Nsitesij is the number of sites in group j where species i is present, and Nsitesj is the total 
number of sites in group j. 

The indicator value of species i in group j is then a value from 0 to 100 (percentage): 

𝐼𝑁𝐷𝑉𝐴𝐿𝑖𝑗 = 100𝐴𝑖𝑗𝐵𝑖𝑗  

The statistical significances (p values) of the indicator values are estimated by 9999 random 
reassignments (permutations) of sites across groups. The p values can optionally be Bonferroni 
corrected (multiplied with the total number of indicator values, this is highly conservative). 

 

Reference 

Dufrene, M. & P. Legendre. 1997. Species assemblages and indicator species: The need for a flexible 
asymmetrical approach. Ecological Monographs 67:345-366. 
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Paired Hotelling 

The paired Hotelling's test expects two groups of multivariate data, marked with a group column. 
Rows within each group must be consecutive. The first row of the first group is paired with the first 
row of the second group, the second row is paired with the second, etc.  

 

With n the number of pairs and p the number of variables: 
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The F has p and n-p degrees of freedom. 

For n<=16, the program also calculates an exact p value based on the T2 statistic evaluated for all 
possible permutations. 

Missing data supported by column average substitution. 
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Modern Analog Technique 

The Modern Analog Technique is a calibration method for reconstructing a past environmental 
parameter (e.g. temperature) from faunal associations. It works by finding modern sites with faunal 
associations close to those in downcore samples. Environmental data from the modern sites are then 
used to estimate the environment downcore. 

The (single) environmental variable, usually temperature, enters in the first column, and taxa in 
consecutive columns. All the modern sites, with known values for the environmental variable, go in 
the first rows, followed by all the downcore samples (these should have question marks in the 
environmental column). 

The plot on the first tab shows all the modern samples, with the observed temperature (for example) 
versus the MAT reconstructed temperature using leave-one-out cross-validation (jackknifing). 

 

Parameters to set:  

• Weighting: When several modern analogs are linked to one downcore sample, their 
environmental values can be weighted equally, inversely proportional to faunal distance, or 
inversely proportional to ranked faunal distance.  

• Distance measure: Several distance measures commonly used in MAT are available. "Squared 
chord" has become the standard choice in the literature.  

• Distance threshold: Only modern analogs closer than this threshold are used. A default value 
is given, which is the tenth percentile of distances between all sample pairs in the modern 
data. The "Dissimilarity distribution" histogram may be useful when selecting this threshold.  

• N analogs: This is the maximum number of modern analogs used for each downcore sample.  
• Jump method (on/off): For each downcore sample, modern samples are sorted by ascending 

distance. When the distance increases by more than the selected percentage, the 
subsequent modern analogs are discarded.  
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Note that one or more of these options can be disabled by entering a large value. For example, a very 
large distance threshold will never apply, so the number of analogs is decided only by the "N 
analogs" value and optionally the jump method.  
 

Cross validation  

The scatter plot and R2 value show the results of a leave-one-out (jackknifing) cross-validation within 
the modern data. The y=x line is shown in red. This only partly reflects the "quality" of the method, as 
it gives little information about the accuracy of downcore estimation. 

 

 

Dissimilarity distribution 

A histogram of all distances in the core-top (modern) data. 

Semivariogram 

Shows a semivariogram of variance in the environmental variable as a function of faunal difference. 
Several semivariogram models can be fitted. This type of plot is familiar from spatial geostatistics, but 
is also useful for MAT because it gives a good impression of the degree of “noise” in the faunal data 
with respect to environmental prediction. 

Reconstructions 

Reconstruction of the paleoenvironmental values using MAT. 
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Weighted averaging partial least squares (WA-PLS) 
Like the Modern Analogue Technique (and calibration with CABFAC), WA-PLS is a method for 
reconstructing past environmental parameters (temperature, pH) from a fossil assemblage, based on 
a training set of modern samples. First described by ter Braak & Juggins (1993) and ter Braak et al. 
(1993), WA-PLS is considered by some as the overall most accurate calibration method. 

The (single) environmental variable, usually temperature, enters in the first column, and taxa in 
consecutive columns. All the modern sites, with known values for the environmental variable, go in 
the first rows, followed by all the downcore samples (these should have question marks in the 
environmental column). 

The plot on the first tab shows all the modern samples, with the observed temperature (for example) 
versus the reconstructed temperature. This does not use cross-validation. The RMSE (Root Mean 
Square Error) is based on these values. 

The method is also cross-validated with the leave-one-out procedure (jackknifing), which is basis for 
the RMSEP value (Root Mean Square Error of Prediction). The number of PLS components should be 
set in order to minimize the RMSEP. Sometimes the minimal value is obtained already with only one 
component, when the method is equivalent to two-way weighted averaging (WA). 

The implementation of WA-PLS in Past is based on the algorithm of ter Braak & Juggins (1993), 
described below with some additional details and comments. 

For the modern (training) set, we have xi the value of the measured environmental parameter in site 
i, and the n x m matrix Y with yik the abundance of taxon k in site i. There are n sites and m taxa. 
Moreover, a ‘+’ replacing a subscript means summation over that subscript. 

Step 0 

Subtract the weighted mean from the environmental variable: 

𝑥𝑖 = 𝑥𝑖 − ∑𝑦𝑖+𝑥𝑖 𝑦++⁄

𝑖

 

Step 1 

Take the centered environmental variable xi as initial site scores ri. 

Do steps 2 to 7 for each PLS component p: 

Step 2 

Calculate new species scores uk* by weighted averaging of the site scores: 

𝑢𝑘
∗ = ∑𝑦𝑖𝑘𝑟𝑖 𝑦+𝑘⁄

𝑖

 

Step 3 

Calculate new site scores ri by weighted averaging of the species scores: 

𝑟𝑖 = ∑𝑦𝑖𝑘𝑢𝑘
∗ 𝑦𝑖+⁄

𝑘
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Step 4 

For the first PLS component, go to step 5. For second and higher components, make the new site 
scores ri uncorrelated with previous components by orthogonalization, according to ter Braak (1987), 
Table 5.2b. 

Step 5 

Take the site scores ri and the species scores uk* as the new PLS component consisting of two vectors 
rp and up. Note 1: In the original algorithm, site scores are standardized in Step 5. In the Past 
implementation, this standardization is not carried out, in order to facilitate reconstruction for new 
samples (ter Braak, pers. comm. 2019). Note 2: The species scores up are saved as well as the site 
scores, as part of the PLS component. 

Step 6 

Do a weighted multiple regression of xi on the components r obtained so far using weights yi+ / y++. 
The regression coefficients are a0 … ap. Take the fitted values as current estimates 𝑥 ̂𝑖 (as shown in the 
plot and used for calculating RMSE). Go to Step 2 with the residuals of the regression as the new site 
scores ri . 

Reconstruction 

After Steps 2-6 have been iterated the specified number of times, a full PLS model has been 
constructed. Reconstruction of the environmental variable x0 from a new sample y0k is then 
computed as follows (in addition it must be remembered to add back the mean value subtracted in 
Step 0). 

First calculate updated species optima: 

𝑢̂𝑘=𝑎0 + ∑𝑎𝑝𝑢𝑘
𝑝

𝑝

 

Then the reconstructed x0 is calculated as the weighted sum 

𝑥0 = ∑𝑦0𝑘𝑢̂𝑘 𝑦0+⁄

𝑘

 

References 

ter Braak, C.J.F. 1987. Ordination. Pp. 91-173 in: Jongman, R.H.G., ter Braak, C.J.F., van Tongeren, 
O.F.R. (eds), Data Analysis in Community and Landscape Ecology, Pudoc. 

ter Braak, C.J.F., Juggins, S., Birks, H.J.B., van der Voet, H. 1993. Weighted Averaging Partial Least 
Squares regression (WA-PLS): definition and comparison with other methods for species-
environment calibration. Pp. 525-560 in: Patil, G.P. & Rao, C.R. (eds), Multivariate Environmental 
Statistics, Elsevier. 

ter Braak, C.J.F., Juggins, S. 1993. Weighted averaging partial least squares (WA-PLS): an improved 
method for reconstructing environmental variables from species assemblages. Hydrobiology 
269/270: 485-502. 
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Similarity and distance indices 

Computes a number of similarity or distance measures between all pairs of rows. The data can be 
univariate or (more commonly) multivariate, with variables in columns. The results are given as a 
symmetric similarity/distance matrix. This module is rarely used, because similarity/distance matrices 
are usually computed automatically from primary data in modules such as PCO, NMDS, cluster 
analysis and ANOSIM in Past. 

Euclidean 

Basic Euclidean distance (the value is adjusted for missing data). 
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Gower 

A distance measure that averages the difference over all variables, each term normalized for the 
range of that variable: 
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The Gower measure is similar to Manhattan distance (see below) but with range normalization. 
When using mixed data types (see below), this is the default measure for continuous and ordinal 
data. 

Chord 

Euclidean distance between normalized vectors. Commonly used for abundance data. Can be written 
as 
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Manhattan 

The sum of differences in each variable: 
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Bray-Curtis 

Bray-Curtis is a popular similarity index for abundance data. Past calculates Bray-Curtis similarity as 
follows: 
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This is algebraically equivalent to the form given originally by Bray and Curtis (1957): 
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Many authors operate with a Bray-Curtis distance, which is simply 1-d. 

Cosine 

The inner product of abundances each normalised to unit norm, i.e. the cosine of the angle between 
the vectors. 
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Morisita 

For abundance data. 
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Horn 

Horn’s overlap index for abundance data (Horn 1966). 
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Mahalanobis 

A distance measure taking into account the covariance structure of the data. With S the variance-
covariance matrix: 

 ( ) ( )
kjkj xxSxx −−= −1T

jkd . 

Correlation 

The complement 1-r of Pearson’s r correlation across the variables: 
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Taking the complement makes this a distance measure. See also the Correlation module, where 
Pearson’s r is given directly and with significance tests. 

Rho 

The complement 1-rs of Spearman’s rho, which is the correlation coefficient of ranks. See also the 
Correlation module, where rho is given directly and with significance tests. 

Dice 

Also known as the Sorensen coefficient. For binary (absence-presence) data, coded as 0 or 1 (any 
positive number is treated as 1). The Dice similarity puts more weight on joint occurences than on 
mismatches.  

When comparing two rows, a match is counted for all columns with presences in both rows. Using M 
for the number of matches and N for the the total number of columns with presence in just one row, 
we have  

djk = 2M / (2M+N).  

Jaccard 

A similarity index for binary data. With the same notation as given for Dice similarity above, we have 

 djk = M / (M+N). 

Kulczynski 

A similarity index for binary data. With the same notation as given for Dice similarity above (with N1 
and N2 referring to the two rows), we have 
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Ochiai 

A similarity index for binary data, comparable to the cosine similarity for other data types: 

 21 NM

M
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M
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. 

Simpson 

The Simpson index is defined simply as M / Nmin, where Nmin is the smaller of the numbers of 
presences in the two rows. This index treats two rows as identical if one is a subset of the other, 
making it useful for fragmentary data. 

Raup-Crick 

Raup-Crick index for absence-presence data. This index (Raup & Crick 1979) uses a randomization 
(Monte Carlo) procedure, comparing the observed number of species ocurring in both associations 
with the distribution of co-occurrences from 1000 random replicates from the pool of samples. 

Hamming 

Hamming distance for categorical data as coded with integers (or sequence data coded as CAGT). The 
Hamming distance is the number of differences (mismatches), so that the distance between (3,5,1,2) 
and (3,7,0,2) equals 2. In PAST, this is normalised to the range [0,1], which is known to geneticists as 
"p-distance". 

Jukes-Cantor 

Distance measure for genetic sequence data (CAGT). Similar to p (or Hamming) distance, but takes 
into account probability of reversals: 

 





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
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1ln
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Kimura 

The Kimura 2-parameter distance measure for genetic sequence data (CAGT). Similar to Jukes-Cantor 
distance but takes into account different probabilities of nucleotide transitions vs. transversions 
(Kimura 1980). With P the observed proportion of transitions and Q the observed number of 
transversions, we have 

 
( ) ( )QQPd 21ln

4

1
21ln

2

1
−−−−−=

. 

Tajima-Nei 

Distance measure for genetic sequence data (CAGT). Similar to Jukes-Cantor distance, but does not 
assume equal nucleotide frequencies. 

http://folk.uio.no/ohammer/past/ref.html
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Tamura 

Distance measure for genetic sequence data (CAGT). An extension of the Kimura 2-parameter 
distance, handling unequal transition/transversion probability, but also taking into account a possible 
bias in the G+C frequency. With P and Q as for Kimura distance, and h = 2θ(1- θ) where θ is the G+C 
frequency (0-1): 

𝑑 = −ℎln (1 −
𝑃

ℎ
− 𝑄) −

1

2
(1 − ℎ)ln(1 − 2𝑄) 

Geographical 

Distance in meters along a great circle between two points on the Earth’s surface. Exactly two 
variables (columns) are required, with latitudes and longitudes in decimal degrees (e.g. 58 degrees 30 
minutes North is 58.5). Coordinates are expected in the WGS84 datum, and distance is calculated 
with respect to the WGS84 ellipsoid. Use of other datums will result in very slight errors. 

The accuracy of the algorithm used (Vincenty 1975) is on the order of 1 mm with respect to WGS84. 

 
User-defined similarity 
 
Expects a symmetric similarity matrix rather than original data. No error checking!  
 
 
User-defined distance 
 
Expects a symmetric distance matrix rather than original data. No error checking!  
 

Mixed 

This option requires that data types have been assigned to columns (see Entering and manipulating 
data). A pop-up window will ask for the similarity/distance measure to use for each datatype. These 
will be combined using an average weighted by the number of variates of each type. The default 
choices correspond to those suggested by Gower, but other combinations may well work better. The 
"Gower" option is a range-normalised Manhattan distance. 

 

All-zeros rows: Some similarity measures (Dice, Jaccard, Simpson etc.) are undefined when 
comparing two all-zero rows. To avoid errors, especially when bootstrapping sparse data sets, the 
similarity is set to zero in such cases. 

Missing data: Most of these measures treat missing data (coded as ‘?’) by pairwise deletion, meaning 
that if a value is missing in one of the variables in a pair of rows, that variable is omitted from the 
computation of the distance between those two rows.  The exceptions are rho distance, using 
column average substitution, and Raup-Crick, which does not accept missing data. 

 

 

 

http://folk.uio.no/ohammer/past/entering.html
http://folk.uio.no/ohammer/past/entering.html
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Genetic sequence stats 
A number of simple statistics on genetic sequence (DNA or RNA) data. The module expects a number 
of rows, each with a sequence. The sequences are expected to be aligned and of equal length 
including gaps (coded as ‘?’). Some of these statistics are useful for selecting appropriate distance 
measures elsewhere in Past. 

Total length:   The total sequence length, including gaps, of one sequence 

Polymorphic sites:  The number of positions with variable states 

Average gap:   The number of gap positions, averaged over all sequences 

Average A, T/U, C, G:  The average number of positions containing each nucleotide 

Average p distance: The p distance between two sequences, averaged over all pairs of 
sequences. The p (or Hamming) distance is defined as the proportion 
of unequal positions 

Average Jukes-Cantor d: The Jukes-Cantor d distance between two sequences, averaged over 
all pairs of sequences. d = -3ln(1 - 4p/3)/4, where p is the p distance 

Maximal Jukes-Cantor d: Maximal Jukes-Cantor distance between any two sequences 

Average transitions (P): Average number of transitions (a↔g, c↔t, i.e. within purines, 

pyrimidines) 

Average transversions (Q): Average number of transversions (a↔t, a↔c, c↔g, t↔g, i.e. 

across purines, pyrimidines) 

R=P/Q:    The transition/transversion ratio 

 

Missing data: Treated as gaps. 

 



161 

 

Model menu 

Linear, bivariate 
If two columns are selected, they represent x and y values, respectively. If one column is selected, it 

represents y values, and x values are taken to be the sequence of positive integers (1,2,...). A straight 

line y=ax+b is fitted to the data. Several bivariate data sets can be regressed in the same plot, and 

their slopes compared, by giving an even number of columns, each pair of columns being one x-y set. 

Finally, new values can be predicted by entering the x value but giving a ‘?’ for the y value. 

There are five different algorithms available: Ordinary Least Squares (OLS),  Reduced Major Axis 

(RMA), Major Axis (MA), Robust, and Prais-Winsten. OLS regression assumes the x values are fixed, 

and finds the line which minimizes the squared errors in the y values. Use this if your x values have 

very little error associated with them. RMA and MA try to minimize both the x and the y errors. 

RMA/MA fitting, standard error estimation and slope comparison are according to Warton et al. 

(2006). 

 

The “Robust” method is an advanced Model I (fixed x values) regression which is robust to outliers. It 

sometimes gives strange results, but can be very successful in the case of “almost” normally 

distributed errors but with some far-off values. The algorithm is “Least Trimmed Squares” based on 

the “FastLTS” code of Rousseeuw & Driessen (1999). Parametric error estimates are not available, 

but Past gives bootstrapped confidence intervals on slope and intercept (beware – this is extremely 

slow for large data sets). 

Prais-Winsten regression (e.g. Wooldridge 2012, ch. 12) is appropriate for data with serially 

correlated residuals, typically time series. The fitted model is a sum of a linear function and an AR(1) 

autoregressive process with autocorrelation rho. An iterative procedure is used, with a tolerance on 

rho of 0.001 and a maximum of 10 iterations. Bootstrapping is not carried out as it would violate the 

serial correlation. 
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Both x and y values can be log-transformed (base 10), in effect fitting your data to the 'allometric' 

function y=10bxa. An a value around 1 indicates that a straight-line ('isometric') fit may be more 

applicable.  

The values for a and b, their errors, Pearson's r correlation, and the probability that the columns are 

not correlated are given. Note the r2 is simply the Pearson’s coefficient squared – it does not adjust 

for regression method. 

 

The calculation of standard errors for slope and intercept assumes normal distribution of residuals 

and independence between the variables and the variance of residuals. If these assumptions are 

strongly violated, it is preferable to use the bootstrapped 95 percent confidence intervals (1999 

replicates). 

The permutation test on correlation (r2) uses 9,999 replicates. 

 

Confidence band for the regression 

In OLS regression (not RMA/MA/Robust/Prais-Winsten), a 95 percent "Working-Hotelling" 

confidence band for the fitted line is available. The confidence band is calculated as 
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When the intercept is forced to zero, the confidence band is calculated as 
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Confidence band for the forecast (prediction) 

In OLS regression, a 95 percent confidence band for forecasting is also given. The confidence band is 

calculated as follows. First calculate the standard error of the estimate and the standard error of the 

estimate of the mean: 

𝑆𝐸𝐸 = √
∑(𝑦𝑖 − 𝑏 − 𝑎𝑥𝑖)

2

𝑛 − 2
 

𝑆𝐸𝑚𝑒𝑎𝑛(𝑥) =
𝑆𝐸𝐸

√𝑛 √1 +
(𝑥 − 𝑥̅)2

1
𝑛

∑(𝑥𝑖 − 𝑥)2
 

Then, 

𝐶𝐼 = 𝑏 + 𝑎𝑥 ± 𝑡0.05
2

,𝑛−2
√𝑆𝐸𝐸2 + (𝑆𝐸𝑚𝑒𝑎𝑛(𝑥))

2
 

 

Zero intercept 

Forces the regression line through zero. This has implications also for the calculation of slope and the 

standard error of the slope. All five methods handle this option. 

 

Residuals  

The Residuals window reports the distances from each data point to the regression line, in the x and 

y directions. Only the latter is of interest when using ordinary linear regression rather than RMA or 

MA. The residuals can be copied back to the spreadsheet and inspected for normal distribution and 

independence between independent variable and residual variance (homoskedasticity). 

 

Durbin-Watson test 

The Durbin-Watson test for positive autocorrelation of residuals in y (violating an assumption of OLS 

regression) is given in the Residuals window. The test statistic varies from zero (total positive 

autocorrelation) through 2 (zero autocorrelation) to 4 (negative autocorrelation). For n<=400, an 

exact p value for no positive autocorrelation is calculated using the PAN algorithm (Farebrother 1980, 

with later corrections). The test is not accurate when using the Zero intercept option. 
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Breusch-Pagan test 

The Breusch-Pagan test for heteroskedasticity, i.e. nonstationary variance of residuals (violating an 

assumption of OLS regression) is given in the Residuals window.  The test statistic is LM = nr2 where r 

is the correlation coefficient between the x values and the squared residuals. It is asymptotically 

distributed as 2 with one degree of freedom. The null hypothesis of the test is homoskedasticity. 

Exponential functions  

Your data can be fitted to an exponential function y=ebeax by first log-transforming just your y column 

(in the Transform menu) and then performing a straight-line fit. 

 

Prediction (forecasting) 

Rows with a ‘?’ for the y value will be included in the table under the ‘Prediction’ tab. The predicted y 

value is calculated for the given x, together with a 95% prediction interval calculated as above 

(confidence band for the forecast). If the ‘log-log’ option was selected, the back-transformed 

prediction and interval will also be given for convenience. Note that this prediction is only strictly 

valid for the OLS model, but will be approximately correct also for the RMA and MA models. 

 

RMA equations 

Slope 
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Standard error on 
22
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a
r sx
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s
b += , where sr is the estimate of standard deviation of residuals and sa is 

the standard error on slope. 

For zero intercept (b=0), set 0=x  and 0=y  for the calculation of slope and its standard error 

(including the calculation of r therein), and use n-1 instead of n-2 for the calculation of standard 

error.  
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Missing data: Supported by row deletion. 
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Linear, multivariate (one independent, n dependent) 

When you have one independent variate and several dependent variates, you can fit each dependent 

variate separately to the independent variate using simple linear regression. This module makes the 

process more convenient by having a scroll button going through each dependent variate. 

The module expects two or more columns of measured data, with the independent in the first 

column and the dependents in consecutive columns.  

 

In addition, an overall MANOVA test of multivariate regression significance is provided. The Wilks' 

lambda test statistic is computed as the ratio of determinants 

HE

E

+
= , 

where E is the error (residuals) sum of squares and crossproducts,  and H is the hypothesis 

(predictions) sum of squares and crossproducts. The Rao’s F statistic is computed from the Wilks’ 

lambda and subjected to a one-tailed F test (see ‘Linear, n independent, n dependent’ below). 

Missing data supported by column average substitution. 

Regression for geometric morphometrics 

For Procrustes-fitted landmarks or Elliptic Fourier coefficients as the dependent variables, see the 

Geometry menu for regression with visualization of shape change. 
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Linear, multiple (one dependent, n independent) 

Requires two or more columns of measured data, with the dependent in the first column and the 

independents in consecutive columns. 

The program will present the multiple correlation coefficient R and R2, together with the "adjusted" 

R2 and an overall ANOVA-type significance test. 

With SSR the regression sum of squares, SSE the error (residuals) sum of squares, n the number of 

points and k the number of independent variates, we have R2=SSR/SST, 
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nR
Radj , 

)1( −−
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knSSE

kSSR
F . 

The coefficients (intercept, and slope for each independent variate) are presented with their 

estimated standard errors and t tests. 

Missing data supported by column average substitution. 
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Linear, multivariate multiple (m independent, n dependent) 

Requires two or more columns of measured data, with the dependent variables in the first column(s) 

and the independents in consecutive columns. The program will ask for the number of dependent 

variables. The output consists of four main parts. 

Overall MANOVA 

An overall test of multivariate regression significance. The Wilks' lambda test statistic is computed as 

the ratio of determinants 

HE

E

+
= , 

where E is the error (residuals) sum of squares and crossproducts,  and H is the hypothesis 

(predictions) sum of squares and crossproducts. 

The Rao’s F statistic is computed from the Wilks’ lambda. With n the number of rows, p the number 

of dependent variables and q the number of independent variables, we have: 
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 The F test has pq and m + 1- pq/2 degrees of freedom. 

Tests on independent variables 

The test for the overall effect of each independent variable (on all dependent variables) is based on a 

similar design as the overall MANOVA above, but comparing the residuals of regression with and 

without the independent variable in question. 

Tests on dependent variables 

See ‘Linear, n independent, one dependent’ above for details of the ANOVA tests for the overall 

effect of all independent variables on each dependent. 

Regression coefficients  and statistics 

The complete set of coefficients and their significances for all combinations of independent and 

dependent variables. 

Missing data supported by column average substitution. 
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Generalized Linear Model 
This module computes a basic version of the Generalized Linear Model, for a single explanatory 

variable. It requires two columns of data (independent and dependent variables). For proportion 

data, a third column with total counts can be included. 

 

 

GLM allows non-normal distributions, and also “transformation” of the model through a link 

function. Some particularly useful combinations of distribution and link function are: 

Normal distribution and the identity link: This is equivalent to ordinary least squares linear regression. 

Normal distribution and the reciprocal link: Fit to the function y=1/(ax+b). 

Normal or gamma distribution and the log link: Fit to the function y=exp(ax+b). 

Poisson distribution and the log link: Fit to the function y=exp(ax+b), for counts 

Binomial distribution and the logit link: Logistic regression for a binary response variable (see figure 

above). A third data column with sample sizes (total count) can be included, if so then the binomial 

distribution can be used for proportion data (0-1). 

Technical details 

The program uses the Iteratively Reweighted Least Squares (IRLS) algorithm for maximum likelihood 

estimation. 
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The dispersion parameter φ, which is used only for the inference, not the parameter estimation, is 

fixed at φ =1 for the Poisson and binomial distributions, and estimated using Pearson’s chi-square for 

the normal and gamma distributions. 

The log-likelihood LL is computed from the deviance D by 
2

D
LL −= . 

The deviance is computed as follows: 
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The G statistic is the difference in D between the full model and an additional GLM run where only 

the intercept is fitted. G is approximately chi-squared with one degree of freedom, giving a 

significance for the slope. 
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Polynomial regression 

Two columns must be selected (x and y values). A polynomial of up to the fifth order is fitted to the 

data. The algorithm is based on a least-squares criterion and singular value decomposition (Press et 

al. 1992), with mean and variance standardization for improved numerical stability. 

 

The polynomial is given by 

01

2

2

3

3

4

4

5

5 axaxaxaxaxay +++++= . 

The chi-squared value is a measure of fitting error - larger values mean poorer fit. The Akaike 

Information Criterion has a penalty for the number of terms. The AIC should be as low as possible to 

maximize fit but avoid overfitting. 

R2 is the coefficient of determination, or proportion of variance explained by the model. Finally, a p 

value, based on an F test, gives the significance of the fit. 

 

Reference 

Press, W.H., S.A. Teukolsky, W.T. Vetterling & B.P. Flannery. 1992. Numerical Recipes in C. Cambridge 

University Press. 

 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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Nonlinear 

Attempts to fit two columns of x-y data to a number of nonlinear equations, using least squares. 

Select a function name from the list. To see more functions, grab a function name and drag up and 

down to scroll. 

  

The 95% confidence intervals are based on 1999 bootstrap replicates. 

Fitting to a nonlinear function can be a bit tricky. For most of the functions, Past uses an educated 

guess for the parameters, followed by Levenberg-Marquardt optimization. 

The Akaike Information Criterion (AIC) may aid in the selection of model. Lower values for the AIC 

imply a better fit, adjusted for the number of parameters. 

Linear 

baxy +=  

Included for comparison with the nonlinear functions. Fitting by ordinary least squares regression. 

The “Zero constant” option will set b=0. 

Quadratic 

cbxaxy ++= 2
 

Included for reference. Fitting by least-squares and SVD (the equation is linear in its coefficients). The 

“Zero constant” option will set c=0. See also the Polynomial Model module. 

 

Power 
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caxy b +=  

The usual power law equation. Initial guess by log-log transformation and linear regression (i.e. c = 

0), followed by nonlinear optimization. The “Zero constant” option will set c=0. 

Exponential 

caey bx +=  

Initial guess by linearization (log-transforming y), followed by nonlinear optimization. The “Zero 

constant” option will set c=0. See also the Generalized Linear Model module. 

Von Bertalanffy 

( )cxbeay −−= 1  

This equation is used for modelling growth of multi-celled animals (Brown & Rothery 1993). It is 

sometimes given in a slightly different form: 

( )( )01
txK

eLy
−−

 −=  

It is easy to see that aL =
, K = c and ( ) cbt ln0 = . 

The value of a is first estimated by the maximal value of y, and b and c using a straight-line fit to a 

linearized model. Finally nonlinear optimization. 

Michaelis-Menten 

xb

ax
y

+
=  

The Michaelis-Menten curve can make accurate fits to rarefaction curves, and may therefore 

(somewhat controversially) be used for extrapolating these curves to estimate biodiversity (Colwell & 

Coddington 1994). It is also an important model equation for chemical kinetics. 

The algorithm uses maximum-likelihood estimators for the so-called Eadie-Hofstee transformation 

(Raaijmakers 1987; Colwell & Coddington 1994), followed by nonlinear optimization. 

Logistic 

cxbe

a
y

−+
=

1
 

A sigmoidal (S-shaped) curve. The logistic equation can model growth with saturation (Brown & 

Rothery 1993), and was used by Sepkoski (1984) to describe the proposed stabilization of marine 

diversity in the late Palaeozoic.  

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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The value of a is first estimated by the maximal value of y, and b and c using a straight-line fit to a 

linearized model. Finally nonlinear optimization. See also the Generalized Linear Model module. 

Gompertz 

cxbeaey =  

Initial estimate is computed using regression on a linearized model , followed by nonlinear 

optimization. 

Gaussian 

( )
2

2

2c

bx

aey

−
−

=  

The ‘bell curve’ with mean b and standard deviation c. Initial guess of a by maximal value of y, b by 

weighted mean, and c=1, followed by nonlinear optimization. 

Hill’s equation (4-parameter logistic) 

𝑦 = 𝑑 +
𝑎 − 𝑑

1 + (
𝑥
𝑏
)
𝑐 

This sigmoidal function is often used to model dosage-response data. d is the minimum and a the 

maximum asymptote. b is the dosage at which 50% of subjects show the response (the IC50 value), 

while c is the “Hill slope”. The “Zero constant” option will set d=0. 

(In previous versions of Past, a slightly different form was used, with b/x instead of x/b and 

consequently c had opposite sign). 

 

References 

Brown, D. & P. Rothery. 1993. Models in biology: mathematics, statistics and computing. John Wiley 
& Sons. 

Colwell, R.K. & J.A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. 
Philosophical Transactions of the Royal Society of London B 345:101-118. 

Raaijmakers, J.G.W. 1987. Statistical analysis of the Michaelis-Menten equation. Biometrics 43:793-
803. 

Sepkoski, J.J. 1984. A kinetic model of Phanerozoic taxonomic diversity. Paleobiology 10:246-267. 
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Sinusoidal regression 

Two columns must be selected (x and y values). A sum of up to eight sinusoids with periods specified 

by the user, but with unknown amplitudes and phases, is fitted to the data. This can be useful for 

modeling periodicities in time series, such as annual growth cycles or climatic cycles, usually in 

combination with spectral analysis. The algorithm is based on a least-squares criterion and singular 

value decomposition. By default, the periods are set to the range of the x values, and harmonics (1/2, 

1/3, 1/4, 1/5, 1/6, 1/7 and 1/8 of the fundamental period). These values can be changed, and need 

not be in harmonic proportion. 

The “Fit periods” option will sequentially optimize the period of each sinusoid (over the full 

meaningful range from one period to the Nyquist frequency), after subtracting all previously fitted 

sinusoids. This is a simple example of the “Matching pursuit” algorithm. The algorithm is slow but 

robust and will fairly reliably find the global optimum.  

 

 

 

The chi-squared value is a measure of fitting error - larger values mean poorer fit. The Akaike 

Information Criterion has a penalty for the number of sinusoids (the equation used assumes that the 

periods are estimated from the data). The AIC should be as low as possible to maximize fit but avoid 

overfitting.  

R2 is the coefficient of determination, or proportion of variance explained by the model. Finally, a p 

value, based on an F test, gives the significance of the fit.  
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It is not meaningful to specify periodicities that are smaller than two times the typical spacing of data 

points.  

Each sinusoid is given by y=a*cos(2*pi*(x-x0) / T - p), where a is the amplitude, T is the period and p is 

the phase. x0 is the first (smallest) x value. An overall constant offset (mean) is also given. 

There are also options to enforce a pure sine or cosine series, i.e. with fixed phases. 
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Smoothing spline 

Two columns must be selected (x and y values). The data are fitted to a smoothing spline, which is a 

sequence of third-order polynomials continuous up to the second derivative. A typical application is 

the construction of a smooth curve going through a noisy data set. The algorithm follows de Boor 

(2001). Sharp jumps in your data can give rise to oscillations in the curve, and you can also get large 

excursions in regions with few data points. Multiple data points at the same X value are collapsed to 

a single point by weighted averaging and calculation of a combined standard deviation. 

 

An optional third column specifies standard deviations on the data points. These are used for 

weighting the data. If unspecified, they are all set to 10% of the standard deviation of the Y values.  

The smoothing value set by the user is a normalized version of the smoothing factor of de Boor 

(default 1). Larger values give smoother curves. A value of 0 will start a spline segment at every point. 

Clicking "Optimize smoothing" will calculate an "optimal" smoothing by a cross validation procedure.  

"View given points" gives a table of the given data points X, Y and stdev(Y), the corresponding Y 

values on the spline curve (ys) and the residuals. The chi-squared test for each point may be used to 

identify outliers. The final column suggests an stdev(Y) value to use if forcing the p value to 0.5.  

An optional fourth input column (if used then the third column must also be filled with stdev values) 

may contain a different number of values from the previous columns. It contains X values to be used 

for interpolation between the data points. Optional columns 5-7 contain lower and upper limits for X 

values (rectangular distribution) and standard deviation for Y values (normal distribution), to be used 

by bootstrapping (Monte Carlo) simulation providing error bars for the interpolated values. These 

functions are included mainly for computing boundary ages for the geological time scale. 

Reference 

de Boor, Carl. 2001. A practical guide to splines. Springer. 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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LOESS smoothing 
 

Two columns must be selected (x and y values). The algorithm used is “LOWESS” (LOcally WEighted 

Scatterplot Smoothing; Cleveland 1979, 1981), with its recommended default parameters (including 

two robustness iterations). Given a number of points n and a smoothing parameter q specified by the 

user, the program fits the nq points around each given point to a straight line, with a weighting 

function decreasing with distance. The new smoothed point is the value of the fitted linear function 

at the original x position. 

  

 

The Bootstrap option will estimate a 95% confidence band for the curve based on 999 random 

replicates. In order to retain the structure of the interpolation, the procedure uses resampling of 

residuals rather than resampling of original data points. 

The Optimize smoothing option will suggest an “optimal” smoothing factor by minimizing the sum of 

squared prediction errors through a 5-fold cross validation. The smoothing factor is constrained to 

the range 0.15 to 0.95. The resulting value will tend towards the lower limit (0.15) for smooth 

(serially autocorrelated) data. As LOESS is primarily a technique for improving visual interpretation, 

the purpose of such automatic selection of the smoothing parameter is debatable. 
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LOESS or smoothing spline? 

This is almost a matter of taste. Compare the curves above, for the same dataset. The spline often 

gives a more aesthetically pleasing curve because of its continuous derivatives but can suffer from 

overshooting near sharp bends in the data. 

 

References 

Cleveland, W.S. 1979. Robust locally weighted fitting and smoothing scatterplots. Journal of the 
American Statistical Association 74:829-836.  

Cleveland, W.S. 1981. A program for smoothing scatterplots by robust locally weighted fitting. The 
American Statistician 35:54. 
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Mixture analysis 

Mixture analysis is a maximum-likelihood method for estimating the parameters (mean, standard 

deviation and proportion) of two or more univariate normal distributions, based on a pooled sample. 

The program can also estimate mean and proportion of exponential, Poisson, and lognormal 

distributions. For example, the method can be used to study differences between sexes (two groups), 

or several species, or size classes, when no independent information about group membership is 

available. 

The program expects one column of univariate data, assumed to be taken from a mixture of normally 

distributed populations (or exponential or Poisson). In the example below, sizes of two brachiopod 

samples have been pooled into one sample. The means, standard deviations and proportions of the 

two original samples have been almost perfectly recovered. 

 

PAST uses the EM algorithm (Dempster et al. 1977), which can get stuck on a local optimum. The 

procedure is therefore automatically run 20 times, each time with new, random starting positions for 

the means. The starting values for standard deviation are set to s/G, where s is the pooled standard 

deviation and G is the number of groups. The starting values for proportions are set to 1/G. The user 

is still recommended to run the program a few times to check for stability of the solution ("better" 

solutions have less negative log likelihood values).  

The Akaike Information Criterion (AIC; Akaike 1974) is calculated with a small-sample correction: 

1
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ln22AICc

−−

+
+−=

kn

kk
Lk

 



181 

 

where k is the number of parameters, n the number of data points and L the likelihood of the model 

given the data. A minimal value for AIC indicates that you have chosen the number of groups that 

produces the best fit without overfitting. 

It is possible to assign each of the data points to one of the groups with a maximum likelihood 

approach. This can be used as a non-hierarchical clustering method for univariate data. The 

“Assignments” button will open a window where the value of each probability density function is 

given for each data point. The data point can be assigned to the group that shows the largest value. 

Missing data: Supported by deletion. 

References 

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic 

Control  19: 716-723. 

Dempster, A.P., Laird, N.M. & Rubin, D.B. 1977. Maximum likelihood from incomplete data via the 

EM algorithm". Journal of the Royal Statistical Society, Series B 39:1-38. 

 

http://en.wikipedia.org/wiki/Hirotsugu_Akaike


182 

 

Abundance models 

This module can be used for plotting taxon abundances in descending rank order on a linear or 

logarithmic (Whittaker plot) scale, or number of species in abundance octave classes (as shown when 

fitting to log-normal distribution). Taxa go in rows, samples (often only one) in columns. It can also fit 

the data to one of four different standard abundance models:  

• Geometric, where the 2nd most abundant species should have a taxon count of k<1 times 
the most abundant, the 3rd most abundant a taxon count of k times the 2nd most abundant 

etc. for a constant k. With ni the count of the ith most abundant taxon, we have 1

1

−= i

i knn . 

This will give a straight descending line in the Whittaker plot. Fitting is by simple linear 
regression of the log abundances.  

• Log-series, with two parameters alpha and x. The fitting algorithm is from Krebs (1989). The 
number of species with n individuals (this equation does not translate directly to the 
Whittaker plot representation): 

n

x
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n

n
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• Broken stick (MacArthur 1957). There are no free parameters to be fitted in this model. With 
Stot the total number of species and ntot the total number of individuals: 
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http://folk.uio.no/ohammer/past/ref.html
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• Log-normal. The fitting algorithm is from Krebs (1989). The logarithm (base 10) of the fitted 
mean and variance are given. The octaves refer to power-of-2 abundance classes:  

Octave Abundance 

1 1 

2 2-3 

3 4-7 

4 8-15 

5 16-31 

6 32-63 

7 64-127 

... ... 

 

A significance value based on chi-squared is given for each of these models, but the power of the test 
is not the same for the four models and the significance values should therefore not be compared. It 
is important, as always, to remember that a high p value can not be taken to imply a good fit. A low 
value does however imply a bad fit. Also note that the chi-squared tests in Past do not seem to 
correspond with some other software, possibly because Past use counts rather than the log-
transformed values in the Whittaker plots. 

 

References 

Krebs, C.J. 1989. Ecological Methodology. Harper & Row, New York. 

MacArthur, R.H. 1957. On the relative abundance of bird species. Proceedings of the National 
Academy of Sciences, USA 43:293-295. 

 

http://folk.uio.no/ohammer/past/ref.html
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Species packing (Gaussian) 

This module fits Gaussian response models to species abundances along a gradient, for one or more 
species. The fitted parameters are optimum (average), tolerance (standard deviation) and maximum. 

The module requires one first column of environmental measurements in samples (e.g. 
temperature), and one or more additional columns of abundance data (taxa in columns). 

 

The algorithm is the same as for the Gaussian function in the nonlinear regression module: Initial 
estimation of optimum and tolerance based on the weighted average, followed by a nonlinear 
optimization by the Levenberg-Marquardt method. 

Note that the R2 value (indicating goodness of fit) can become negative – this is not a bug but means 
that the Gaussian fits worse than the sample mean. 
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Logarithmic spiral 
 

Fits a set of points in the plane to a logarithmic spiral. Useful for characterizing e.g. mollusc shells, 

teeth, claws and horns. Requires two columns of coordinates (x and y).  The points must be given in 

sequence, either inwards or outwards. Left-handed and right-handed spirals are both acceptable. 

 

The fitted spiral in polar coordinates: baer = . The scale a and the exponent b are given, together 

with the estimated center point, marked with a red cross. The whorl expansion rate W (factor 

increase in radius per whorl) is calculated from b as beW 2= . 

The center position is estimated by nonlinear optimization and the spiral itself by linearization and 

regression. 
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Changepoint modeling 
This module suggests positions of abrupt change (changepoints) in a time series, with constant values 

between the changepoints. The input data should be a single column with a series of numbers, or 

multiple columns with multivariate data collected at the same points in time or stratigraphy. An 

example application is the detection of breaks in multivariate geochemical data through a sediment 

core. The module implements the method described by Gallagher et al. (2011). 

The algorithm is Bayesian, “transdimensional” Markov chain Monte Carlo (MCMC). It produces not a 

single set of model parameters, but a large number as samples (“simulations”) from the probability 

distribution. 

For multiple-column data sets, note that each column is weighted equally, as mean and standard 

deviation are automatically normalized away prior to modeling. 

 

Max chpoints: The maximal number of changepoints. This can often be left at the default, 10, unless 

you want to allow a larger or enforce a smaller number of changepoints. After analysis, the actual 

average number of changepoints (across simulations) is reported. 

Simulations: The number of MCMC iterations, default 100,000. This includes the so-called burn-in, 

which is the initial number of simulations before the algorithm hopefully converges and data start to 

be collected. The number of burn-in iterations is fixed at 20,000. The “History” curve (see below) 

should be inspected to see if the number of simulations should be increased. For noisy data, it may 

be necessary to increase the number of simulations to a million or more, giving long computation 

times. 

Changepoints plot: Shows a histogram of the positions of changepoints across all simulations. 
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Model plot: Shows the average changepoint model as a red curve superimposed on the given data 

points. If most simulations agree on the changepoint positions, this will be a step-like curve (i.e. 

constant between changepoints). Variance (i.e. uncertainty) in changepoint positions will give a more 

rounded appearance. For multivariate data, you can select the plotted variable in the drop-down 

menu. 

History: Shows the model log likelihood as a function of iteration number. Ideally, this curve should 

start at some large negative value, and quickly increase to a relatively stable value, varying as 

unstructured noise around a mean. The end of the burn-in is shown as a vertical line. If the log 

likelihood does not seem to stabilize, the number of simulations may have to be increased. 

Missing values are treated by linear interpolation before the analysis. 

 

Reference 

Gallagher, K., Bodin, T., Sambridge, M., Weiss, D., Kylander, M., Large, D. 2011. Inference of abrupt 

changes in noisy geochemical records using transdimensional changepoint models. Earth and 

Planetary Science Letters 311:182-194. 
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Diversity menu 

Alpha diversity indices 

  

These statistics apply to association data, where number of individuals are tabulated in rows (taxa) 
and possibly several columns (samples). The available statistics are as follows, for each sample:  

• Number of taxa (S)  
 

• Total number of individuals (n)  
 

• Dominance = 1-Simpson index. Ranges from 0 (all taxa are equally present) to 1 (one taxon 
dominates the community completely). 

 
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where ni is number of individuals of taxon i. 

If the “Unbiased” option is selected, an alternative form of D is computed: 
 

𝐷 = ∑
𝑛𝑖(𝑛𝑖 − 1)

𝑛(𝑛 − 1)
𝑖

 

 

• Simpson index 1-D. Measures 'evenness' of the community from 0 to 1. Note the confusion in 
the literature: Dominance and Simpson indices are often interchanged!  

 

• Shannon index (entropy). A diversity index taking into account the number of individuals as 
well as number of taxa. Varies from 0 for communities with only a single taxon to high values 
for communities with many taxa, each with few individuals. 
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If the “Unbiased” option is selected, H is computed with a bias correction 
 
Hu = H + (S-1)/(2n). 
 
If the “Unbiased” and “Use ACE for S” options are selected, the ACE species richness  
estimator is used instead of S in the bias correction. This corresponds to the Bias-corrected  
MLE (MLE_bc) estimator for Shannon’s index given by Chao & Shen (2003). 
 
If the “log2” option is selected, the Shannon index is reported with the logarithm to base 2. 

 

• Buzas and Gibson's evenness: eH/S  
 

• Brillouin’s index: 
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• Menhinick's richness index:  
n

S
 

 

• Margalef's richness index: (S-1) / ln(n) 
 

• Equitability. Shannon diversity divided by the logarithm of number of taxa. This measures the 
evenness with which individuals are divided among the taxa present.  

 

• Fisher's alpha - a diversity index, defined implicitly by the formula S=a*ln(1+n/a) where S is 
number of taxa, n is number of individuals and a is the Fisher's alpha.  

 

• Berger-Parker dominance: simply the number of individuals in the dominant taxon relative to 
n. 
 

• Chao1: An estimate of total species richness (Chao 1984). Version without bias correction: 
 

𝑆𝐶ℎ𝑎𝑜1 = 𝑆 + (
𝑛 − 1

𝑛
)

𝐹1
2

2𝐹2
 

 

where F1 is the number of singleton species and F2 the number of doubleton species. If F2=0, 

we use 

𝑆𝐶ℎ𝑎𝑜1 = 𝑆 + (
𝑛 − 1

𝑛
)
𝐹1(𝐹1 − 1)

2
 

 
When the “Unbiased” option is selected, the equation is 
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𝑆𝐶ℎ𝑎𝑜1 = 𝑆 + (
𝑛 − 1

𝑛
)
𝐹1(𝐹1 − 1)

2(𝐹2 + 1)
 

 

• iChao1: “Improved” Chao1 estimator (Chiu et al. 2014), taking into account also the numbers  
F3 and F4 of species observed 3 and 4 times: 
 

𝑆𝑖𝐶ℎ𝑎𝑜1 = 𝑆𝐶ℎ𝑎𝑜1 +
𝑛 − 3

4𝑛

𝐹3

𝐹4
× max [𝐹1 −

𝑛 − 3

2(𝑛 − 1)

𝐹2𝐹3

𝐹4
, 0] 

 
If F4=0, we use F4=1 to avoid division by zero (Chiu et al. 2014). 
 

• ACE: Abundance-based Coverage Estimator (Chao & Lee 1992): 
Srare is the number of species with 10 or less individuals. Sabund is the number of species with  
more than 10 individuals (S = Srare + Sabund). nrare is the number of individuals among the rare  
species. 
 

𝐶𝐴𝐶𝐸 = 1 −
𝐹1

𝑛𝑟𝑎𝑟𝑒
   (sample cover estimate) 

 

𝛾𝐴𝐶𝐸
2 = max [

𝑆𝑟𝑎𝑟𝑒

𝐶𝐴𝐶𝐸

∑ 𝑘(𝑘−1)𝐹𝑘
10
𝑘=1

𝑛𝑟𝑎𝑟𝑒(𝑛𝑟𝑎𝑟𝑒−1)
, 0] (coefficient of variation) 

 

𝑆𝐴𝐶𝐸 = 𝑆𝑎𝑏𝑢𝑛𝑑 +
𝑆𝑟𝑎𝑟𝑒

𝐶𝐴𝐶𝐸
+

𝐹1

𝐶𝐴𝐶𝐸
𝛾𝐴𝐶𝐸

2   

 

• Squares: Richness estimator (Alroy, 2018), designed to be more accurate than Chao-1 when 
abundance distributions are even: 

𝑆𝑠𝑞 = 𝑆 +
𝐹1

2

𝑛2 − 𝐹1𝑆
∑𝑛𝑖

2

𝑆

𝑖=1

 

 

Some of these indices are explained in Harper (1999). 

Confidence intervals 

Approximate confidence intervals for all these indices can be computed with a bootstrap procedure. 
The given number of random samples (default 9999) is produced, each with the same total number 
of individuals as in the original sample. For each individual in the random sample, the taxon is chosen 
with probabilities proportional to the original abundances. A 95 percent confidence interval is then 
calculated. Note that the diversity in the replicates will often be less than, and never larger than, the 
pooled diversity in the total data set – this bias can optionally be “fixed” by centering the confidence 
interval on the original value. 

Alternatively, analytical estimates of the 95% confidence interval are available for some of the 
indices: 

• Dominance and Simpson index: Confidence interval estimated as [D - 1.96√(var D), D + 
1.96√(var D)], with the variance var D computed as in the “Diversity t test” module (see 
below). 
 

http://folk.uio.no/ohammer/past/ref.html
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• Shannon index: Confidence interval estimated as [H - 1.96√(var H), H + 1.96√(var H)], with 
the variance var H computed as in the “Diversity t test” module (see below). 

These analytical confidence intervals for the Dominance/Simpson and the Shannon indices 
correspond well to the centred bootstrap intervals, at least for large n. 

 

• Fisher alpha: Following Fisher et al. (1943), we use 

var 𝛼 =
𝛼3(𝑁 + 𝛼)2ln

2𝑛 + 𝛼
𝑛 + 𝛼 − 𝛼𝑛

(𝑆𝑛 + 𝑆𝛼 − 𝑁𝛼)2
 

The 95% confidence interval is then [α - 1.96√(var α), α + 1.96√(var α)]. This analytical 
confidence interval tends to be considerably wider than the bootstrapped CI. The reason for 
the discrepancy is unknown. 

• Chao1: The computations are a bit complex. Past uses equations given in Colwell (2013). For 
F1>0 and F2>0, and for the version without bias correction, we use 

var(𝑆𝐶ℎ𝑎𝑜1) = 𝐹2 [
1

2

𝑛 − 1

𝑛
(
𝐹1

𝐹2
)
2

+ (
𝑛 − 1

𝑛
)
2

(
𝐹1

𝐹2
)
3

+
1

4
(
𝑛 − 1

𝑛
)
2

(
𝐹1

𝐹2
)
4

] 

 For the bias-corrected version: 

var(𝑆𝐶ℎ𝑎𝑜1) = (
𝑛 − 1

𝑛
)
𝐹1(𝐹1 − 1)

2(𝐹2 + 1)
+ (

𝑛 − 1

𝑛
)
2 𝐹1(2𝐹1 − 1)2

4(𝐹2 + 1)2
+ (

𝑛 − 1

𝑛
)
2 𝐹1

2𝐹2(𝐹1 − 1)2

4(𝐹2 + 1)4
 

 If F2 =0 but F1 > 1, we use for both versions: 

var(𝑆𝐶ℎ𝑎𝑜1) = (
𝑛 − 1

𝑛
)
𝐹1(𝐹1 − 1)

2
+ (

𝑛 − 1

𝑛
)
2 𝐹1(2𝐹1 − 1)2

4
− (

𝑛 − 1

𝑛
)
2 𝐹1

4

4𝑆𝐶ℎ𝑎𝑜1
 

We then calculate T = SChao1 – S and 

𝐾 = exp(1.96√ln(1 +
var(𝑆𝐶ℎ𝑎𝑜1)

𝑇2 )) 

 The 95% confidence interval is [S + T/K, S + TK]. 

Otherwise (F1=0, or F2=0 and F1=1), we use 

var(𝑆𝐶ℎ𝑎𝑜1) ≈ ∑𝐹𝑖(𝑒
−𝑖 − 𝑒−2𝑖)

𝑖≥1

−
1

𝑛
(∑𝑖𝑒−𝑖𝐹𝑖

𝑖≥1

)

2
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𝑃 =
∑ 𝐹𝑖𝑒

−𝑖
𝑖≥1

𝑆
 

95% confidence interval: [S/(1-P) – 1.96√(var(SChao1))/(1-P), S/(1-P) – 1.96√(var(SChao1))/(1-P)]. 
If the lower bound is smaller than S, it is set to S. 

Bootstrapped comparison of diversity indices in two samples is provided in the Compare diversities 
module. 

 

References 

Alroy, J. 2018. Limits to species richness in terrestrial communities. Ecology Letters 21:1781–1789. 

Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian 
Journal of Statistics 11:265-270. 

Chao, A., Lee, S.-M. 1992. Estimating the number of classes via sample coverage. Journal of the 
American Statistical Association 87:210–217. 

Chao, A., Shen, T.-J. 2003. Nonparametric estimation of Shannon's diversity index when there are 
unseen species in sample. Environmental and Ecological Statistics 10:429-443. 

Chiu, C.-H., Wang, Y.-T., Walther, B.A., Chao, A. 2014. An improved nonparametric lower bound of 
species richness via a modified Good–Turing frequency formula. Biometrics 70:671-682. 

Colwell, R. K. 2013. EstimateS: Statistical estimation of species richness and shared species from 
samples. Version 9. User's Guide and application published at: http://purl.oclc.org/estimates. 

Fisher, R.A., Corbet, A.S., Williams, C.B. 1943. The relation between the number of species and the 
number of individuals in a random sample of an animal population. The Journal of Animal Ecology 
12:42-58. 

Harper, D.A.T. (ed.). 1999. Numerical Palaeobiology. John Wiley & Sons. 

 



193 

 

Quadrat richness 

Requires two or more columns, each containing presence/absence (1/0) of different taxa down the 
rows (positive abundance is treated as presence). 

Four non-parametric species richness estimators are included in PAST: Chao 2, first- and second-
order jackknife, and bootstrap. All of these require presence-absence data in two or more sampled 
quadrats of equal size. Colwell & Coddington (1994) reviewed these estimators and found that the 
Chao2 and the second-order jackknife performed best. 

The output from Past is divided into two panels. First, the richness estimators and their analytical 
standard deviations (only for Chao2 and Jackknife1) are computed from the given set of samples. 
Then the estimators are computed from 1000 random resamplings of the samples with replacement 
(bootstrapping), and their means and standard deviations are reported. In other words, the standard 
deviations reported here are bootstrap estimates, and not based on the analytical equations.  

 

 

Chao2 

The Chao2 estimator (Chao 1987) is calculated as in EstimateS version 8.2.0 (Colwell 2009), with bias 
correction: 
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where Sobs is the total observed number of species, m the number of samples, Q1 the number of 
uniques (species that occur in precisely one sample) and Q2 the number of duplicates (species that 
occur in precisely two samples). 

If Q1>0 and Q2>0, variance is estimated as 
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If Q1>0 but Q2=0: 
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If Q1=0: 
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where M is the total number of occurrences of all species in all samples. 

 

Jackknife 1 

First-order jackknife (Burnham & Overton 1978, 1979; Heltshe & Forrester 1983): 
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where fj is the number of samples containing j unique species. 

 

Jackknife 2 

Second-order jackknife (Smith & van Belle 1984): 
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No analytical estimate of variance is available. 

 

Bootstrap 

Bootstrap estimator (Smith & van Belle 1984): 
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where pk is the proportion of samples containing species k. No analytical estimate of variance is 
available. 



195 

 

 

References 

Burnham, K.P. & W.S. Overton. 1978. Estimation of the size of a closed population when capture 

probabilities vary among animals. Biometrika 65:623-633. 

Burnham, K.P. & W.S. Overton. 1979. Robust estimation of population size when capture 

probabilities vary among animals. Ecology 60:927-936. 

Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. 

Biometrics 43, 783-791. 

Colwell, R.K. & J.A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. 

Philosophical Transactions of the Royal Society (Series B) 345:101-118. 

Heltshe, J. & N.E. Forrester. 1983. Estimating species richness using the jackknife procedure. 

Biometrics 39:1-11. 

Smith, E.P. & G. van Belle. 1984. Nonparametric estimation of species richness. Biometrics 40:119-

129. 

 



196 

 

Beta diversity 

Two or more rows (samples) of presence-absence (0/1) data, with taxa in columns. 
 

 

The beta diversity module in Past can be used for any number of samples (not limited to only two 
samples). The eight measures available are described in Koleff et al. (2003):  

Past Koleff et al.  Equation Ref. 
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S: total number of species;  : average number of species; N: number of samples; g(H): total gain of 
species along gradient (samples ordered along columns); l(H): total loss of species; ei: number of 
samples containing species i; T: total number of occurrences. 
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Taxonomic   

Requires one or more columns (samples), each containing counts of individuals of different 
taxa down the rows. In addition, one or more group columns with names of genera/families 
etc. (see below). 

 

Taxonomic diversity and taxonomic distinctness as defined by Clarke & Warwick (1998), 
including confidence intervals computed from 1000 random replicates taken from the 
pooled data set (all samples). Note that the "global list" of Clarke & Warwick is not entered 
directly, but is calculated internally by pooling (summing) the given samples.  

These indices depend on taxonomic information also above the species level, which has to 
be entered for each species as follows. Species names go in the name column (leftmost; in 
the Row attributes), genus names in the first group column, family in second group column 
etc., up to four group columns. Of course you can substitute for other taxonomic levels as 
long as they are in ascending order. Species counts for the samples follow in the columns 
thereafter. 

Taxonomic diversity in one sample is given by (note other, equivalent forms exist): 
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where the wij are weights such that wij = 0 if i and j are the same species, wij = 1 if they are 
the same genus, etc. The x are the abundances. 

Taxonomic distinctness: 
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For presence-absence data, taxonomic diversity and distinctness will be valid but equal to 
each other. 
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Individual rarefaction 

For comparing taxonomical diversity in samples of different sizes. Requires one or more columns of 
counts of individuals of different taxa (each column must have the same number of values). When 
comparing samples: Samples should be taxonomically similar, obtained using standardised sampling 
and taken from similar 'habitat'. 

Given one or more columns of abundance data for a number of taxa, this module estimates how 
many taxa you would expect to find in a sample with a smaller total number of individuals. With this 
method, you can compare the number of taxa in samples of different size. Using rarefaction analysis 
on a large sample, you can read out the number of expected taxa for any smaller sample size 
(including that of the smallest sample). The algorithm is from Krebs (1989), using a log Gamma 
function for computing combinatorial terms. An example application in paleontology can be found in 
Adrain et al. (2000). 

 

Let N be the total number of individuals in the sample, s the total number of species, and Ni the 
number of individuals of species number i. The expected number of species E(Sn) in a sample of size n 
and the variance V(Sn) are then given by 
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Standard errors (square roots of resampling variances) are given by the program. In the graphical 
plot, these standard errors are converted to 95 percent confidence intervals. 

Unconditional variance 

The classical rarefaction variance given above is called conditional variance. It is conditional on the 
reference sample, and will reduce to zero for Sn = s. In contrast, Colwell et al. (2012) described an 
unconditional rarefaction variance estimate that will not reduce to zero at the end of the rarefaction 
curve. This method is also available in Past. 

There are two models for individual rarefaction described by Colwell et al. (2012), the multinomial 
model (classical rarefaction) and the Poisson model (Coleman rarefaction). The two methods give 
quite similar results. The “industry standard” rarefaction software, EstimateS, somewhat 
incongruously computes E(Sn) according to the multinomial equation (eq. (4) in Colwell et al., 
equivalent to the equation given above), while V(Sn) uses the Poisson formulation (eq. 7 in Colwell et 
al.), according to the EstimateS manual. This approach is followed in Past for compatibility with 
EstimateS. The computation also requires an estimate for total (sampled and unsampled) species 
richness. The Chao1 estimator is used for this (cf. Colwell et al. 2012). 

Rarefaction of Simpson and Shannon indices 

In addition to rarefaction of species richness, Past also includes rarefaction of the Simpson D and 
Shannon H diversity indices, following Chao et al. (2014). In the forms 1/D and eH, these are special 
cases of so-called Hill numbers, which is a family of diversity indices. Past reports the rarefaction 
curves in these forms, for consistency with Chao et al. (2014), but for convenience the Shannon index 
can also be reported as the conventional H. Past does not yet compute confidence intervals for these 
rarefaction curves (which would require bootstrapping). 

Let Xi be the number of individuals of the ith species that are observed in the sample, i = 1, 2, … , S. 
Let fk be the number of species represented by exactly k individuals in the sample, k = 0, 1, … , n. For 
smaller sample sizes (m<n), and k>0, the estimator for fk is (eq. 7 in Chao et al. 2014) 
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The estimator for the Hill number with q=1, which is equivalent to the exponential eH of the Shannon 
index, is (eq. 10a in Chao et al. 2014) 
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The estimator for the Hill number with q=2, which is equivalent to the inverse 1/D of the Simpson 
index, is (eq. 11b in Chao et al. 2014) 
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Missing values: Treated as zero. 
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Shareholder Quorum Subsampling (SQS) 
Shareholder Quorum Subsampling was introduced by John Alroy (2010). Chao and Jost (2012) 
provided analytical solutions for an almost equivalent method, which they called “Coverage-based 
rarefaction”. Past follows the algorithm of Alroy (2010). 

Like rarefaction, SQS can be used to standardize species counts across samples of different size, but 
standardizing on a fixed “coverage” rather than a fixed sample size. Coverage is defined as the 
proportion of individuals in the population that are represented by the species recovered in the 
sample. If all species are recovered in the sample, coverage is 1. If only one species is recovered, but 
50% of the individuals in the population belong to this species, coverage is 0.5. SQS gives a more fair 
sampling of communities with different evenness than classical rarefaction, which suffers from a 
“compression effect” where differences in richness are artificially dampened. SQS is therefore 
gradually replacing classical rarefaction in the literature. 

The module expects one or more columns of count data. The following parameters can be selected: 

Quorum: The desired subsampled coverage level (0-1). This value should be larger than 0.4. A value 
of e.g. 0.9 might be better, but for small samples this coverage may not be achieved, giving an error 
message. The quorum value is not critical: Larger values will give higher SQS species richness, but this 
is of little consequence for the comparison of several samples. 

Trials: The number of subsampling runs. Higher values give more exact results, but takes longer. 

Ignore singletons and Ignore dominant: Disregard species with abundance 1; disregard the single 
most common species. The possible advantage of this is slightly unclear. 

The module outputs the original sample size (N), the number of observed species (S_obs), and 
Good’s u which is a simple estimator of sample coverage: u = 1 - f1/N, where f1 is the number of 
singletons (Chao & Jost 2012 give an improved estimator), in addition to the SQS richness. 
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Sample rarefaction (Mao’s tau) 

Sample rarefaction requires a matrix of presence-absence data (abundances treated as presences), 

with taxa in rows and samples in columns. Sample-based rarefaction (also known as the species 

accumulation curve) is applicable when a number of samples are available, from which species 

richness is to be estimated as a function of number of samples. PAST implements the analytical 

solution known as "Mao’s tau", with standard deviation. In the graphical plot, the standard errors are 

converted to 95 percent confidence intervals. See Colwell et al. (2004) for details. 

With H samples and Sobs the total number of observed species, let sj be the number of species found 

in j samples, such that s1 is the number of species found in exactly one sample, etc. The total number 

of species expected in h≤H samples is then 
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These coefficients are computed via a log Gamma function. The variance estimator is 
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is an estimator for the unknown total species richness. Following Colwell et al. (2004), a 

Chao2-type estimator is used. For s2>0, 
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For modeling and extrapolating the curve using the Michaelis-Menten equation, use the Copy Data 

button, paste to a new Past spreadsheet, and use the nonlinear fitting module in the Model menu. 

Past also includes extrapolation of the sample rarefaction curve, up to 4H samples, using equation 18 

in Colwell et al. (2012). Confidence intervals for the extrapolation is not yet implemented. 
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SHE analysis  

SHE analysis (Hayek & Buzas 1997, Buzas & Hayek 1998) requires a matrix of integer abundance data 
(counts), with taxa in rows and samples in columns.  The program calculates log species abundance 
(ln S), Shannon index (H) and log evenness (ln E = H – ln S) for the first sample. Then the second 
sample is added to the first, and the process continues. The resulting cumulative SHE profiles can be 
interpreted ecologically. If the samples are taken not from one homogenous population but across a 
gradient or up a stratigraphic section, breaks in the curve may be used to infer discontinuities (e.g. 
biozone boundaries). 
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Diversity permutation test 

Expects two columns of abundance data with taxa down the rows.This module computes a number 
of diversity indices for two samples, and then compares the diversities using random permutations. 
999 random matrices with two columns (samples) are generated, each with the same row and 
column totals as in the original data matrix. 
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Diversity t test 
Comparison of the Shannon and Simpson diversities in two samples. Then Shannon t test is described 
by e.g. Hutcheson (1970), Poole (1974), Magurran (1988). This is an alternative to the randomization 
test available in the Diversity permutation test module. Requires two columns of abundance data 
with taxa down the rows. 

The Shannon index here include a bias correction and may diverge slightly from the uncorrected 
estimates calculated elsewhere in PAST, at least for small samples. With pi the proportion (0-1) of 
taxon i, S the number of taxa and N the number of individuals, the estimator of the index is 
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The Simpson index (dominance) has estimated variance (Brower et al. 1998): 
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Diversity profiles 

This module requires one or more columns of abundance data with taxa down the rows. The main 
purpose is to compare diversities in several samples.  

The validity of comparing diversities across samples can be criticized because of arbitrary choice of 
diversity index. One sample may for example contain a larger number of taxa, while the other has a 
larger Shannon index. A number of diversity indices may be compared to make sure that the diversity 
ordering is robust. A formal way of doing this is to define a family of diversity indices, dependent 
upon a single continuous parameter (Tothmeresz 1995).  

PAST uses the exponential of the so-called Renyi index, which depends upon a parameter . For =0, 

this function gives the total species number. =1 (in the limit) gives an index proportional to the 

Shannon index, while =2 gives an index which behaves like the Simpson index. 
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The program can plot several such diversity profiles together. If the profiles cross, the diversities are 
non-comparable. The bootstrapping option (giving a 95% confidence interval) is based on 2000 
replicates. 

 

Reference 

Tothmeresz, B. 1995. Comparison of different methods for diversity ordering. Journal of 
Vegetation Science 6:283-290. 

 

http://folk.uio.no/ohammer/past/ref.html


210 

 

Time series menu 

Simple periodogram 
Since palaeontological data are often unevenly sampled, Fourier-based methods can be difficult to 

use. PAST therefore includes the Lomb periodogram for unevenly sampled data (Press et al. 1992), 

with time values given in the first column and dependent values in the second column. If only one 

column is selected, even spacing of one unit between data points is assumed. The Lomb periodogram 

should then give similar results as the FFT. The data are automatically detrended prior to analysis. 

 

The frequency axis is in units of 1/(x unit). If for example, your x values are given in millions of years, 

a frequency of 0.1 corresponds to a period of 10 million years. The power axis is in units proportional 

to the square of the amplitudes of the sinusoids present in the data. Also note that the frequency 

axis extends to very high values. If your data are evenly sampled, the upper half of the spectrum is a 

mirror image of the lower half, and is of little use. If some of your regions are closely sampled, the 

algorithm may be able to find useful information even above the half-point (Nyquist frequency).  

The highest peak in the spectrum is presented with its frequency and power value, together with a 

probability that the peak could occur from random data. The 0.01 and 0.05 significance levels ('white 

noise lines') are shown as red dashed lines. 

The example above shows a spectral analysis of a foram oxygen isotope record from 1 Ma to Recent, 

with an even spacing of 0.003 Ma (3 ka). There are periodicities at frequencies of about 9 (split peak), 

25 and 43 Ma-1, corresponding to periods of 111 ka, 40 ka and 23 ka – clearly orbital forcing. 

Reference 

Press, W.H., S.A. Teukolsky, W.T. Vetterling & B.P. Flannery. 1992. Numerical Recipes in C. Cambridge 

University Press. 

 

http://folk.uio.no/ohammer/past/ref.html
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REDFIT spectral analysis 
This module is an implementation of the REDFIT procedure of Schulz and Mudelsee (2002). It is a 

more advanced version of the simple Lomb periodogram described above. REDFIT includes an option 

for “Welch overlapped segment averaging”, which implies splitting the time series into a number of 

segments, overlapping by 50%, and averaging their spectra. This reduces noise but also reduces 

spectral resolution. In addition, the time series is fitted to an AR(1) red noise model which is usually a 

more appropriate null hypothesis than the white noise model described above. The given “false-

alarm lines” are based on both parametric approximations (chi2) and Monte Carlo (using 1000 

random realizations of an AR(1) process). 

The input must be in the form of two columns with time and data values, or one column of equally-

spaced data values. The data are automatically detrended. The fitting to AR(1) implies that the data 

must have the correct time direction (in contrast with the simple spectrogram above where the time 

direction is arbitrary). The time values are expected to be ages before present. If not, it will be 

necessary to give them negative signs. 

 

The frequency oversampling value controls the number of points along the frequency axis (but 

having many points does not increase frequency resolution!). Increasing the number of segments will 

reduce noise, but also decrease the resolution. The window function influences the trade-off 

between spectral resolution and attenuation of side lobes. 

The (average) tau value is the characteristic time scale (the parameter of the AR model). The 

bandwidth is the spectral resolution given as the width between the -6dB points. 

The fit to an AR(1) model can be assessed using the runs value and its 5% acceptance interval. This 

test is only available with Monte Carlo on, oversampling=1, segments=1, window=rectangular. 
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In addition to a fixed set of false-alarm levels (80%, 90%, 95% and 99%), the program also reports a 

“critical” false-alarm level (False-al) that depends on the segment length (Thomson 1990). 

Important: Because of long computation time, the Monte Carlo simulation is not run by default, and 

the Monte Carlo false-alarm levels are therefore not available. When the Monte Carlo option is 

enabled, the given spectrum may change slightly because the Monte Carlo results are then used to 

compute a “bias-corrected” version (see Schulz and Mudelsee 2002). 

Missing values supported. 

 

References 

Schulz, M. & M. Mudelsee. 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced 

paleoclimatic time series. Computers & Geosciences 28:421-426. 

Thomson, D.J. 1990. Time series analysis of Holocene climate data. Philosophical Transactions of the 

Royal Society of London, Series A 330:601-616. 

 



213 

 

Multitaper spectral analysis 

In traditional spectral estimation, the data are often “windowed” (multiplied with a bell-shaped 
function) to reduce spectral leakage. In the multitaper method, several orthogonal window functions 
are applied, and the results combined. The resulting spectrum has low leakage, low variance, and 
retains information from the beginning and end of the time series. Also, statistical testing can take 
advantage of the multiple spectral estimates. A possible disadvantage is reduced spectral resolution. 

Requires evenly spaced data, given in one column. The data are not detrended. 

 

The implementation is based on Mann & Lees (1996) and Fortran code by Michael Mann. It includes 
a red-noise model based on a “reshaped” spectrum, i.e. after removing and interpolating peaks. 

The number of tapers can be set to 3 or 5 for different trade-offs between variance and resolution. 

Spectrum type: The two algorithms give very similar results, but the “adaptive” option is 
recommended by Mann & Lees (1996). 

Sample interval: This value only affects the scaling of the frequency axis. 

Reshape threshold: This value affects how strong a spectral peak must be to count as a harmonic 
component, to be removed by the reshaping procedure. 

Note: Past reproduces examples in Mann & Lees (1996), but some other implementations seem to 
give higher levels for the confidence (significance) lines. The reason for this is unknown. 

Reference 

Mann, M.E. & Lees. J. 1996. Robust estimation of background noise and signal detection in climatic 
time series. Climatic Change 33:409-445. 
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Walsh transform 

The Walsh transform is a type of spectral analysis (for finding periodicities) of binary or ordinal data. 
It assumes even spacing of data points, and expects one column of binary (0/1) or ordinal (integer) 
data. 

 

The normal methods for spectral analysis are perhaps not optimal for binary data, because they 
decompose the time series into sinusoids rather than "square waves". The Walsh transform may 
then be a better choice, using basis functions that flip between -1 and +1. These basis functions have 
varying "frequencies" (number of transitions divided by two), known as sequencies. In PAST, each 
pair of even ("cal") and odd ("sal") basis functions is combined into a power value using cal2+sal2, 
producing a "power spectrum" that is comparable to the Lomb periodogram.  

In the example above, compare the Walsh periodogram (top) to the Lomb periodogram (bottom). 
The data set has 0.125 periods per sample. Both analyses show harmonics. 

The Walsh transform is slightly exotic compared with the Fourier transform, and the results must be 
interpretated cautiously. For example, the effects of the duty cycle (percentage of ones versus zeros) 
are somewhat difficult to understand.  

In PAST, the data values are pre-processed by multiplying with two and subtracting one, bringing 0/1 
binary values into the -1/+1 range optimal for the Walsh transform. The data are zero-padded to the 
next power of 2 if necessary, as required by the method. 
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Evolutive Fourier transform 

Spectral analysis using the Fourier transform (FFT), but dividing the signal into a sequence of 
overlapping windows, which are analysed individually. This allows development of the spectrum in 
time, in contrast with the global analysis provided by the other spectral analysis modules. Sample 
position is shown on the x axis, frequency (in periods per sample) on the y axis, and power on a 
logarithmic scale as colour or grey scale. 

The Short-time Fourier Transform (STFT) can be compared with wavelet analysis, but with a linear 
frequency scale and with constant time resolution independent of frequency. 

 

 

 

The window size controls the trade-off between resolution in time and frequency; small windows 
give good time resolution but poor frequency resolution. Windows are zero-padded by a factor eight 
to give a smoother appearance of the diagram along the frequency axis. The window functions 
(Rectangle, Welch, Hanning, Hamming, Blackman-Harris, multitaper with 3, 4 or 5 tapers) give 
different trade-offs between frequency resolution and sideband rejection. 

Missing values are treated using linear interpolation before analysis.  
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Wavelet transform 

Inspection of time series at different scales. Requires one column of ordinal or continuous data with 
even spacing of points. 

The continuous wavelet transform (CWT) is an analysis method where a data set can be inspected at 
small, intermediate and large scales simultaneously. It can be useful for detecting periodicities at 
different wavelengths, self-similarity and other features. The vertical axis in the plot is a logarithmic 
size scale (base 2), with the signal observed at a scale of only two consecutive data points at the top, 
and at a scale of one fourth of the whole sequence at the bottom. One unit on this axis corresponds 
to a doubling of the size scale. The top of the figure thus represents a detailed, fine-grained view, 
while the bottom represents a smoothed overview of longer trends. Signal power (or more correctly 
squared correlation strength with the scaled mother wavelet) is shown with a grayscale or in colour. 

 

The shape of the mother wavelet can be set to Morlet (wavenumber 6), Paul (4th order) or DOG 
(Derivative Of Gaussian, 2nd or 6th derivative). The Morlet wavelet usually performs best.  

The example above is based on a foram oxygen isotope record from 1 Ma to Recent, with an even 
spacing of 0.003 Ma (3 ka). A band can be seen at a scale of about 25=32 samples, or about 100 ka. A 
weaker band around 23.7=13 samples corresponds to a scale of about 40 ka. These are orbital 
periodicities. In contrast with the “bulk” spectral analysis, the scalogram makes visible changes in 
strength and frequency over time. 

The so-called “cone of influence” can be plotted to show the region where boundary effects are 
present. 

The ‘Sample interval’ value can be set to a value other than 1. This will only influence the scaling of 
the labels on the x and y axes. 
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The algorithm is based on fast convolution of the signal with the wavelet at different scales, using the 
FFT. 

Significance test: The significance level corresponding to p=0.05 can be plotted as a contour (chi-
squared test according to Torrence & Compo 1998). The “Lag” value, as given by the user, specifies 
the null hypothesis. Lag=0 specifies a white-noise model. Values 0<Lag<1 specifies a red-noise model 
with the given MA(1) autocorrelation coefficient. It can be estimated using the ARMA module in the 
Time menu (specify zero AR terms and one MA term and note the MA value in the Coefficients tab). 

If the “Power” option is deselected, the program will show only the real part of the scalogram (not 
squared). This shows the signal in the time domain, filtered at different scales. 

In the ‘View numbers’ window, each row shows one scale, with sample number (position) along the 
columns. 

The ‘Filter’ tab shows the time series at one scale value, as power values if the ‘Power’ option is 
selected in the main tab, or real parts if not. This, in effect, works as a bandpass filter. 

The wavelet transform was used by Prokoph et al. (2000) for illustrating cycles in diversity curves for 
planktic foraminifera. The code in Past is based on Torrence & Compo (1998). 

Missing values are treated using linear interpolation before analysis. 

 

References 

Prokoph, A., A.D. Fowler & R.T. Patterson. 2000. Evidence for periodicity and nonlinearity in a high-

resolution fossil record of long-term evolution. Geology 28:867-870. 

Torrence, C. & G.P. Compo. 1998. A practical guide to wavelet analysis. Bulletin of the American 

Meteorological Society 79:61-78. 

  

http://folk.uio.no/ohammer/past/ref.html
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Wavelets for unequal spacing 
Inspection of time series at different scales. Requires two input columns, containing time and data 

values. 

This module is similar to the Wavelet Transform module, but accepts unequally spaced data. It does 

not (yet) provide a significance test, and because it does not use the FFT it is considerably slower. 

Also, the frequency axis is linear, not logarithmic. The algorithm is based on the Weighted Wavelet z-

transform (WWZ) of Foster (1996) and the Fortran implementation of Templeton (2004). Please note 

that this module does not do magic – in intervals with little data the wavelet analysis will not be 

informative, especially at high frequencies. 

The c parameter of Foster (1996) is fixed at c = 1/72, slightly higher than the recommended c = 1/8π.  

This value is chosen because it corresponds to a wavenumber of 6 as used by the Wavelet Transform 

module. 

References 

Foster, G. 1996. Wavelets for period analysis of unevenly sampled time series. The Astronomical 

Journal 112:1709-1729. 

Templeton, M. 2004. Time-series analysis of variable star data. The Journal of the American 

Association of Variable Star Observers 32:41-54. 

  



219 

 

Point events spectrum 
This module, using the “circular spectral analysis” method (e.g. Lutz 1985) is used to search for 

periodicity in point event series such as earthquakes, volcanic eruptions, and mass extinctions (e.g. 

Rampino & Caldeira 2015). A single column of event times (e.g. dates of eruptions in millions of 

years) is required. The event times do not need to be in sequential order. 

 

The method works by wrapping the time line around a circle with a circumference corresponding to a 

trial period P. If points are P-periodic, they will cluster at a certain angle corresponding to the phase.  

The ages of events ti are converted to angles ai : 

𝑎𝑖 =
2𝜋𝑡𝑖
𝑃

 mod 2𝜋 

As in directional statistics, the mean sines and cosines are computed and converted to a mean vector 

magnitude (Rayleigh statistic) R and a phase t0 : 

𝑆 =
1

𝑁
∑sin𝑎𝑖  

𝐶 =
1

𝑁
∑cos𝑎𝑖  

𝑅 = √𝑆2 + 𝐶2 

𝑡0 =
𝑃

2𝜋
tan−1

𝑆

𝐶
 

(taken to the correct quadrant) 

R and t0 are computed for P ranging from the average waiting time up to 1/3 of the total duration of 

the series, giving a full spectrum. 
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A 95% significance line for R (in red) is computed by a Monte Carlo procedure with 1,000 replicates. 

Random event times are computed by a gamma distribution for waiting times. The shape parameter 

should be set to k=1 (i.e. exponential distribution) for a null model with no interactions between 

events (Poisson process). If closely spaced points are expected to be rare, you can set k=2 or k=3. 

Wrapping correction: Lutz (1985) described a correction for non-integer number of wraps causing 

some points to be over-represented. This correction, optional in Past, gives a jagged appearance of 

the spectral curve and seems to work best for relatively large numbers of points (N>20). 

Harmonics: This method is as plagued by harmonics as traditional Fourier analysis. A spectral peak for 

a period P will be accompanied by strong peaks also on harmonics, i.e. at P/2, P/3 etc. It is important 

to take this into account when interpreting the spectrum. 

 

References 

Lutz, T.M. 1985. The magnetic reversal record is not periodic. Nature 317:404-407. 

Rampino, M.R. & K. Caldeira. 2015. Periodic impact cratering and extinction levels over the last 260 

million years. Monthly Notices of the Royal Astronomical Society 454:3480-3484. 
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Autocorrelation 

Autocorrelation (Davis 1986) is carried out on separate column(s) of evenly sampled 
temporal/stratigraphic data. Lag times τ up to n/2, where n is the number of values in the vector, are 
shown along the x axis (positive lag times only - the autocorrelation function is symmetrical around 
zero). A predominantly zero autocorrelation signifies random data - periodicities turn up as peaks.  

 

The "95 percent confidence interval" option will draw lines at 

3

1
76.1

+−


n
 

after Davis (1986). This is the confidence interval for random, independent points (white noise). 
There are two issues: White noise is an unrealistic null model, and the confidence interval is only 
strictly valid at each individual lag (multiple testing problem). 

Missing data supported. 

 

Reference 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons. 

 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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Autoassociation 

Autoassociation is analogous to autocorrelation, but for a sequence of binary or nominal data coded 
as integer numbers. 

 

 

 

For each lag, the autoassociation value is simply the ratio of matching positions  to total number of 
positions compared. The expected autoassociation value (0.335 in the example above) for a random 
sequence is (Davis 1986) 
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where n is the total number of positions, m is the number of distinct states (3 in the example above) 
and Xk is the number of observations in state k. 

For non-zero lags, a P value is computed from the overlapping positions only, and the expected 
number of matches is then given by E=nP. This is compared with the observed number of matches O 
to produce a χ2 with 1 degree of freedom: 
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with O’=n-O and E’=n(1-P) the observed and expected number of mismatches. Note the Yates’ 
correction. The resulting p values (two-tailed) can be shown as a function of lag. 

The multiple testing issue arises for the set of p values. 
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The test above is not strictly valid for “transition” sequences where repetitions are not allowed (the 
sequence in the example above is of this type). In this case, select the “No repetitions” option. The p 
values will then be computed by an exact test, where all possible permutations without repeats are 
computed and the autoassociation compared with the original values (on-tailed). This test will take a 
long time to run for n>30, and the option is not available for n>40. 

Missing data supported. 

 

Reference 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons. 
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Cross-correlation 

Cross-correlation (Davis 1986)is carried out on two column(s) of evenly sampled 
temporal/stratigraphic data. The x axis shows the displacement of the second column with respect to 
the first, the y axis the correlation between the two time series for a given displacement. The "p 
values" option will draw the significance of the correlation, after Davis (1986). 

For two time series x and y, the cross-correlation value at lag time m is 
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The summations and the mean values are only taken over the parts where the sequences overlap for 
a given lag time. 

The equation shows that for positive lags, x is compared with a y that has been delayed by m 
samples. A high correlation value at positive lags thus means that features in y are leading, while x 
lags behind. For negative lags, features in x are leading. A reminder of this is given by the program. 

The p value for a given m is given by a t test with n-2 degrees of freedom, with n the number of 
samples that overlap: 
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It is important to note that this test concerns one particular m. Plotting p as a function of all m raises 
the issue of multiple testing – p values smaller than 0.05 are expected for 5% of lag times even for 
completely random (uncorrelated) data sets. 

In the example above, the “earthquakes” data seem to lag behind the “injection” data with a delay of 
0-2 samples (months in this case), where the correlation values are highest. The p values (red curve) 
indicates significance at these lags. Curiously, there also seems to be significance for negative 
correlation at large positive and negative lags. 

Missing data supported. 

 

Reference 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons. 

 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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Mantel correlogram (and periodogram) 

This module expects several rows of multivariate data, one row for each sample. Samples are 
assumed to be evenly spaced in time. 

The Mantel correlogram (e.g. Legendre & Legendre 1998) is a multivariate extension to 
autocorrelation, based on any similarity or distance measure. The Mantel correlogram in PAST shows 
the average similarity between the time series and a time lagged copy, for different lags.  

 

The Mantel periodogram is a power spectrum of the multivariate time series, computed from the 
Mantel correlogram (Hammer 2007). 

The Mantel scalogram is an experimental plotting of similarities between all pairs of points along the 
time series. The apex of the triangle is the similarity between the first and last point. The base of the 
triangle shows similarities between pairs of consecutive points. 
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References 

Hammer, Ø. 2007. Spectral analysis of a Plio-Pleistocene multispecies time series using the Mantel 
periodogram. Palaeogeography, Palaeoclimatology, Palaeoecology 243:373-377. 

Legendre, P. & L. Legendre. 1998. Numerical Ecology, 2nd English ed. Elsevier, 853 pp. 
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Runs test 
The runs test is a non-parametric test for randomness in a sequence of values such as a time series. 

Non-randomness may include such effects as autocorrelation, trend and periodicity. The module 

requires one column of data, which are internally converted to 0 (x≤0) or 1 (x>0). 

 

The test is based on a dichotomy between two values (x≤0 or x>0). It counts the number of runs 

(groups of consecutive equal values) and compares this to a theoretical value. The runs test can 

therefore be used directly for sequences of binary data. There are also options for “runs about the 

mean” (the mean value subtracted from the data prior to testing), or “runs up and down” (the 

differences from one value to the next taken before testing). 

With n the total number of data points, n1 the number of points ≤0 and n2 the number of points >0, 

the expected number of runs in a random sequence, and the variance, are 
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With the observed number of runs R, a z statistic can be written as 
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The resulting two-tailed p value is not accurate for n<20. A Monte Carlo procedure is therefore also 

included, based on 10,000 random replicates using the observed n, n1 and n2. 
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Mann-Kendall trend test 
A non-parametric test for trend. Requires a single column of data. Missing values are deleted, and n 
adjusted accordingly. The procedure follows Gilbert (1987). 

Data x1, ... xn are assumed to be ordered in sequence of collection time, or in spatial sequence. Define 
the indicator function 

sgn 𝑥 = {
1, if 𝑥 > 0
0, if 𝑥 = 0
1, if 𝑥 > 0

 

The S statistic is calculated by summing over all pairs of values: 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

S will be negative for a negative trend, zero for no trend, and positive for an increasing trend. 

For n≤10, the p value is taken from a table of exact values (Gilbert 1987). For n>10, a normal 
approximation is used, as follows. 

Determine the total number of groups of ties g and the number of tied values tj within each group, in 
the sorted sequence. Then estimate the standard deviation of S by 

𝑆𝐷 = √
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑𝑡𝑗(𝑡𝑗 − 1)(2𝑡𝑗 + 5)

𝑔

𝑗=1

] 

The Z statistic is then 

𝑍 =
|𝑆| − 1

𝑆𝐷
sgn 𝑆 

which is used to calculate p from the cumulative normal distribution as usual. The subtraction of 1 is 
a continuity correction. 

 

Reference 

Gilbert, R.O. 1987. Statistical methods for environmental pollution monitoring. Van Nostrand 
Reinhold, New York. 
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Point events 
Expects one column containing times of events (e.g. earthquakes or clade divergences) or positions 

along a line (e.g. a transect). The times do not have to be in increasing order. 

 

Density trend (Laplace test) 

The “Laplace” test for a trend in density (intensity) is described by Cox & Lewis (1978). It is based on 

the test statistic 

n
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where t is the mean event time, n the number of events and L the length of the interval. L is 

estimated as the time from the first to the last event, plus the mean waiting time. U is approximately 

normally distributed with zero mean and unit variance under the null hypothesis of constant 

intensity. This is the basis for the given p value. 

If p<0.05, a positive U indicates an increasing trend in intensity (decreasing waiting times), while a 

negative U indicates a decreasing trend. Note that if a trend is detected by this test, the sequence is 

not stationary and the assumptions of the exp test below are violated. 

Exp test for Poisson process 

The exp test (Prahl 1999) for a stationary Poisson process (random, independent events) is based on 

the set of n waiting times Δti between successive events in the sorted sequence . The test statistic is: 
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where T is the mean waiting time. M will tend to zero for a regularly spaced (overdispersed) 

sequence, and to 1 for a highly clustered sequence. For the null hypothesis of a Poisson process, M is 

asymptotically normally distributed with mean 1/e - /n and standard deviation β/n, where 

=0.189 and β=0.2427. This is the basis for the given z test. 

In summary, if p<0.05 the sequence is not Poisson. You can then inspect  the M statistic; if smaller 

than the expected value this indicates regularity, if higher it indicates clustering. 

For both tests, p values are also estimated by Monte Carlo simulation with 9999 random data sets. 

 

References 

Cox, D. R. & P. A. W. Lewis. 1978. The Statistical Analysis of Series of Events. Chapman and Hall, 

London. 

Prahl, J. 1999. A fast unbinned test on event clustering in Poisson processes. Arxiv, Astronomy and 

Astrophysics September 1999. 
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Markov chain 

This module requires a single column containing a sequence of nominal data coded as integer 

numbers. For example, a stratigraphic sequence where 1 means limestone, 2 means shale and 3 

means sand. A transition matrix containing counts or proportions (probabilities) of state transitions is 

displayed. The “from”-states are in rows, the “to”-states in columns. 

It is also possible to specify several columns, each containing one or more state transitions (two 

numbers for one transition, n numbers for a sequence giving n-1 transitions).  

 

The chi-squared test reports the probability that the data were taken from a system with random 

proportions of transitions (i.e. no preferred transitions). The transitions with anomalous frequencies 

can be identified by comparing the observed and expected transition matrices. 

The “Embedded (no repeats)” option should be selected if the data have been collected in such a 

way that no transitions to the same state are possible (data points are only collected when there is a 

change). The transition matrix will then have zeroes on the diagonal. 

The algorithms, including an iterative algorithm for embedded Markov chains, are according to Davis 

(1986). 

 

Reference 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons.  
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ARMA (and intervention analysis) 

Analysis and removal of serial correlations in time series, and analysis of the impact of an external 
disturbance ("intervention") at a particular point in time. Assumes stationary time series, except for a 
single intervention. Requires one column of equally spaced data. 

This powerful but somewhat complicated module implements maximum-likelihood ARMA analysis, 
and a minimal version of Box-Jenkins intervention analysis (e.g. for investigating how a climate 
change might impact biodiversity).  

By default, a simple ARMA analysis without interventions is computed. The user selects the number 
of AR (autoregressive) and MA (moving-average) terms to include in the ARMA difference equation. 
The log-likelihood and Akaike information criterion are given. Select the numbers of terms that 
minimize the Akaike criterion, but be aware that AR terms are more "powerful" than MA terms. Two 
AR terms can model a periodicity, for example.  

The main aim of ARMA analysis is to remove serial correlations, which otherwise cause problems for 
model fitting and statistics. The residual should be inspected for signs of autocorrelation, e.g. by 
copying the residual from the numerical output window back to the spreadsheet and using the 
autocorrelation module. Note that for many paleontological data sets with sparse data and 
confounding effects, proper ARMA analysis (and therefore intervention analysis) will be impossible.  

The program is based on the likelihood algorithm of Melard (1984), combined with nonlinear 
multivariate optimization using simplex search.  

Intervention analysis proceeds as follows. First, carry out ARMA analysis on only the samples 
preceding the intervention, by typing the last pre-intervention sample number in the "last samp" 
box. It is also possible to run the ARMA analysis only on the samples following the intervention, by 
typing the first post-intervention sample in the "first samp" box, but this is not recommended 
because of the post-intervention disturbance. Also tick the "Intervention" box to see the optimized 
intervention model.  

The analysis follows Box and Tiao (1975) in assuming an "indicator function" u(i) that is either a unit 
step or a unit pulse, as selected by the user. The indicator function is transformed by an AR(1) 
process with a parameter delta, and then scaled by a magnitude (note that the magnitude given by 
PAST is the coefficient on the transformed indicator function: first do y(i) = delta*y(i-1)+u(i), then 
scale y by the magnitude). The algorithm is based on ARMA transformation of the complete 
sequence, then a corresponding ARMA transformation of y, and finally linear regression to find the 
magnitude. The parameter delta is optimized by exhaustive search over [0,1].  

For small impacts in noisy data, delta may end up on a sub-optimum. Try both the step and pulse 
options, and see what gives smallest standard error on the magnitude. Also, inspect the "delta 
optimization" data, where standard error of the estimate is plotted as a function of delta, to see if 
the optimized value may be unstable.  

The Box-Jenkins model can model changes that are abrupt and permanent (step function with 
delta=0, or pulse with delta=1), abrupt and non-permanent (pulse with delta<1), or gradual and 
permanent (step with delta<0).  
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Be careful with the standard error on the magnitude - it will often be underestimated, especially if 
the ARMA model does not fit well. For this reason, a p value is deliberately not computed (Murtaugh 
2002). 

 

The example data set (blue curve) is Sepkoski’s curve for percent extinction rate on genus level, 
interpolated to even spacing at ca. 5 million years. The largest peak is the Permian-Triassic boundary 
extinction. The user has specified an ARMA(2,0) model. The residual is plotted in red. The user has 
specified that the ARMA parameters should be computed for the points before the P-T extinction at 
time slot 37, and a pulse-type intervention. The analysis seems to indicate a large time constant 
(delta) for the intervention, with an effect lasting into the Jurassic. 

 

References 

Box, G.E.P. & G.C. Tiao. 1975. Intervention analysis with applications to economic and environental 
problems. Journal of the American Statistical Association 70:70-79. 

Melard, G. 1984. A fast algorithm for the exact likelihood of autoregressive-moving average models. 
Applied Statistics 33:104-114. 

Murtaugh, P.A. 2002. On rejection rates of paired intervention analysis. Ecology 83:1752-1761. 
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Simple smoothers 
 

A set of simple smoothers for a single column of evenly spaced data. See also the spline and LOESS 

smoothers in the Model menu. 

Missing data are supported. 

  

 

Moving average 

Simple n-point, centered moving average (n must be odd). Commonly used, but has unfortunate 

properties such as a non-monotonic frequency response. 

Gaussian 

Weighted moving average using a Gaussian kernel with standard deviation set to 1/5 of the window 

size (of n points). This is an overall good method. 

Moving median 

Similar to moving average but takes the median instead of the mean. This method is more robust to 

outliers but can produce a “blocky” appearance. 

AR 1 (exponential) 

Recursive (autoregressive) filter, yi = yi-1 + (1-)xi  with   a smoothing coefficient from 0 to 1. This 

corresponds to weighted averaging with exponentially decaying weights. Gives a phase delay and 

also a transient in the beginning of the series. Included for completeness. 
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Savitzky-Golay 

The Savitzky-Golay method implements least-squares fit to a polynomial inside a moving window of 

size n points. Second-order (m=2) and fourth-order (m=4) polynomials are included. These are 

“optimal” smoothers in the sense that they preserve all moments up to m. This tends to give better 

preservation of peak values and peak widths than other smoothers. 

Non-local means 

Non-local means is a relatively new, powerful smoothing method, mostly used for image denoising 

but also effective for time series (Tracey & Miller 2012). It is an averaging method like the moving 

average and Gaussian methods, but the average is taken not over neighboring points but over points 

in similar regions, which can be far away. This tends to preserve peaks and transitions better than 

local averaging. In Past, the size of the local regions (patch size) can be selected; it could be set to e.g. 

N=7 or N=13. The search radius is fixed at half the length of the time series. The value of lambda 

controls the degree of smoothing. Tracey & Miller (2012) suggest a value of about 0.6 times the 

standard deviation of the noise (which is usually unknown, but can be estimated by eye). 

 

Reference 

Tracey, B. & Miller, E. 2012. Nonlocal means denoising of ECG signals. IEEE Transactions on 

Biomedical Engineering 59: 2383-2386. 
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FIR filter 

Filtering out certain frequency bands in a time series can be useful to smooth a curve, remove slow 

variation, or emphasize certain periodicities (e.g. Milankovitch cycles). One column of evenly spaced 

data is expected. For most applications in data analysis, it is crucial that the filter has linear phase 

response. Past therefore uses FIR (Finite Impulse Response) filters, which are designed using the 

Parks-McClellan algorithm. The following filter types are available: Lowpass, highpass, bandpass and 

bandstop. 

 

 

Filter parameters 

To design an optimal filter takes a little effort. Frequencies are specified in the range 0-0.5, i.e. T0/T 

where T0 is the sampling interval (not specified to the computer) and T is the required period. For 

example, if your real sampling interval is 1,000 years, a frequency corresponding to a period of 

23,000 years is specified as 1,000/23,000=0.043. 

After setting the filter type, you should select a transition width (or leave the default of 0.02). 

Decreasing the transition width will make a sharper filter, at the cost of larger ripple (“waves” in the 

frequency response). 

Note that the values in text fields are not updated until you press Enter. Also, if an invalid 

combination is entered (e.g. a transition band crossing 0 or 0.5, or upper limit less than lower limit) 

the program will reset some value to avoid errors. It is therefore required to enter the numbers in an 

order so that the filter is always valid. 



237 

 

The filter types are as follows: 

1. Lowpass. The From frequency is forced to zero. Frequencies up to the To frequency pass the 
filter. Frequencies from To+Transition to 0.5 are blocked. 

2. Highpass. The To frequency is forced to 0.5. Frequencies above the From frequency pass the 
filter. Frequencies from 0 to From-Transition are blocked. 

3. Bandpass. Frequencies from From to To pass the filter. Frequencies below From-Transition 
and above To+Transition are blocked. 

4. Bandstop. Frequencies from From to To are blocked. Frequencies from 0 to From-Transition 
and from To+Transition to 0.5 pass the filter. 

Filter order 

The filter order should be large enough to give an acceptably sharp filter with low ripple. However, a 

filter of length n will give less accurate results in the first and last n/2 samples of the time series, 

which puts a practical limit on filter order for short series. 

The Parks-McClellan algorithm will not always converge. This gives an obviously incorrect frequency 

response, and attempting to apply such a filter to the data will give a warning message. Try to change 

the filter order (usually increase it) to fix the problem. 

Missing values are treated using linear interpolation before analysis. 
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Insolation (solar forcing) model 

This module computes solar insolation at any latitude and any time from 100 Ma to the Recent (the 

results are less accurate before 50 Ma). The calculation can be done for a "true" orbital longitude, 

"mean" orbital longitude (corresponding to a certain date in the year), averaged over a certain 

month in each year, or integrated over a whole year.  

The implementation in PAST is ported from the code by Laskar et al. (2004), by courtesy of these 

authors. Please reference Laskar et al. (2004) in any publications.  

It is necessary to specify a data file containing orbital parameters. Download the file 

INSOLN.LA2004.BTL.250.ASC from http://vo.imcce.fr/insola/earth/online/earth/earth.html and put 

in anywhere on your computer. The first time you run the calculation, PAST will ask for the position 

of the file.  

The amount of data can become excessive for long time spans and short step sizes! 

 

Reference 

Laskar, J., P. Robutel, F. Joutel, M. Gastineau, A.C.M. Correia & B. Levrard. 2004. A long-term 

numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428:261-285. 

  

http://folk.uio.no/ohammer/past/ref.html
http://vo.imcce.fr/insola/earth/online/earth/earth.html
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Date/time conversion 

Utility to convert dates and/or times to a continuous time unit for analysis. The program expects one 

or two columns, each containing dates or times. If both are given, then time is added to date to give 

the final time value. 

Dates can be given in the formats Year/Month/Day or Day/Month/Year. Years need all digits (a year 

given as 11 will mean 11 AD, not 2011). Only Gregorian calendar dates are supported. Leap years are 

taken into account. 

Time can be given as Hours:Minutes or Hours:Minutes:Seconds (seconds can include decimals). 

The output units can be years (using the Gregorian mean year of 365.2425 days), days (of 86400 

seconds), hours, minutes or seconds. 

The starting time (time zero) can be the smallest given time, the beginning of the first day, the 

beginning of the first year, year 0 (note the “astronomical” convention where the year before year 1 

is year 0), or the beginning of the first Julian day (noon, year -4712). 

The program operates with simple (UT) time, defined with respect to the Earth’s rotation and with a 

fixed number of seconds (86400) per day.  

If your input data consists of space-separated date-time values, such as “2011/12/24 18:00:00.00”, 

then you may have to use the “Import text file” function to read the data such that dates and times 

are split into separate columns. 

The calculation of Julian day (which is used to find number of days between two dates) follows 

Meeus (1991): 

if month <= 2 begin year := year - 1; month := month + 12; end; 

A = floor(year/100); 

B = 2 – A + floor(A/4); 

JD = floor(365.25(year + 4716)) + floor(30.6001(month+1)) + day + B – 1524.5; 

 

Reference 

Meeus, J. 1991. Astronomical algorithms. Willmann-Bell, Richmond. 
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Geometrical menu 

Circular (one sample) 
  
The module plots a rose diagram (polar histogram) of directions. Used for plotting current-oriented 
specimens, orientations of trackways, fault lines, etc.  Also appropriate for time-of day data (0-24 
hours). 
 
One column of directional (0-360) or orientational (0-180) data in degrees is expected. Directional or 
periodic data in other forms (radians, hours, etc.) must be converted to degrees using e.g. the 
Evaluate Expression module (Transform menu). 
 

 

By default, the 'mathematical' angle convention of anticlockwise from east is chosen. If you use the 
'geographical' convention of clockwise from north, tick the box.  

You can also choose whether to have the abundances proportional to radius in the rose diagram, or 
proportional to area (equal area).  

The "Kernel density" option plots a circular kernel density estimate.  

Descriptive statistics 

The mean angle takes circularity into account: 

i

i







−=

cos

sin
tan 1 (taken to the correct quadrant). 
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The 95 percent confidence interval on the mean is estimated according to Fisher (1983). It assumes 
circular normal distribution, and is not accurate for very large variances (confidence interval larger 
than 45 degrees) or small sample sizes. The bootstrapped 95% confidence interval on the mean uses 
5000 bootstrap replicates. The graphic uses the bootstrapped confidence interval. 

The concentration parameter κ is estimated by iterative approximation to the solution to the 
equation 
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 where I0 and I1 are imaginary Bessel functions of orders 0 and 1, estimated according to Press et al. 
(1992), and R defined below (see e.g. Mardia 1972). 

Rayleigh’s test for uniform distribution  

The R value (mean resultant length) is given by:  
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R is further tested against a random distribution using Rayleigh's test for directional data (Davis 
1986). Note that this procedure assumes evenly or unimodally (von Mises) distributed data - the test 
is not appropriate for e.g. bimodal data. The p values are computed using an approximation given by 
Mardia (1972): 
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Rao’s spacing test for uniform distribution 

The Rao's spacing test (Batschelet 1981) for uniform distribution has test statistic 


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 , 

where no360= . iiiT  −= +1  for i<n, 1

o360  +−= nnT . This test is nonparametric, and does 

not assume e.g. von Mises distribution. The p value is estimated by linear interpolation from the 
probability tables published by Russell & Levitin (1995).  

A Chi-square test for uniform distribution is also available, with a user-defined number of bins 
(default 4).  

 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html


242 

 

The Watson’s U2 goodness-of-fit test for von Mises distribution 

Let f be the von Mises distribution for estimated parameters of mean angle and concentration: 
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The test statistic (e.g. Lockhart & Stevens 1985) is 
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estimated by numerical integration. Critical values for the test statistic are obtained by linear 
interpolation into Table 1 of Lockhart & Stevens (1985). They are acceptably accurate for n>=20. 

 

Axial data 

The 'Orientations' option allows analysis of linear (axial) orientations (0-180 degrees). The Rayleigh 
and Watson tests are then carried out on doubled angles (this trick is described by Davis 1986); the 
Chi-square uses four bins from 0-180 degrees; the rose diagram mirrors the histogram around the 
origin. 

 

References 

Batschelet, E. 1981. Circular statistics in biology. Academic Press. 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons. 

Fisher, N.I. 1983. Comment on "A Method for Estimating the Standard Deviation of Wind Directions". 

Journal of Applied Meteorology 22:1971. 

Lockhart, R.A. & M.A. Stephens 1985. Tests of fit for the von Mises distribution. Biometrika 72:647-

652. 

Mardia, K.V. 1972. Statistics of directional data. Academic Press, London. 

Russell, G. S. & D.J. Levitin 1995. An expanded table of probability values for Rao's spacing test. 

Communications in Statistics: Simulation and Computation 24:879-888. 

 

http://www.psych.mcgill.ca/levitin/pubspages/AnExpand.htm
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Circular (two samples) 

The module expects two columns of directional (0-360) or orientational (0-180) data in degrees. 

  

 

Watson-Williams test 

The Watson-Williams test for equal mean angle in two samples is a parametric test, assuming von 
Mises distribution, but is fairly robust. The concentration parameter κ should be larger than 1.0 for 
accurate testing. In addition, the test assumes similar angular variances (R values). 

The two samples φ and θ have n1 and n2 values. The resultant length R is calculated for each sample 
and for the combined sample: 
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The test statistic U is computed as 
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The significance is computed by first correcting U according to Mardia (1972a): 
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where n = n1 + n2. The p value is then given by the F distribution with 1 and n-2 degrees of freedom. 
The combined concentration parameter κ is maximum-likelihood, computed as described under 
“Directions (one sample)” above. 

 

Mardia-Watson-Wheeler test 

This non-parametric test for equal distribution is computed according to Mardia (1972b). 
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and similarly for the second sample (N=n1+n2). The r1i  are the ranks of the values of the first sample 
within the pooled sample. 

For N>14, W is approximately chi-squared with 2 degrees of freedom. 

 

References 

Mardia, K.V. 1972a. Statistics of directional data. Academic Press, London. 

Mardia, K.V. 1972b. A multi-sample uniform scores test on a circle and its parametric competitor. 
Journal of the Royal Statistical Society Series B 34:102-113. 
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Circular correlation 

Testing for correlation between two directional or orientational variates. Assumes “large” number of 

observations. Requires two columns of directional (0-360) or orientational (0-180) data in degrees. 

  

This module uses the circular correlation procedure and parametric significance test of 

Jammalamadaka & Sengupta (2001). 

The circular correlation coefficient r between vectors of angles α and β is 
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where the angular means are calculated as described previously. The test statistic T is computed as 
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For large n, this statistic has asymptotically normal distribution with mean 0 and variance 1 under the 

null hypothesis of zero correlation, which is the basis for the calculation of p. 

Reference 

Jammalamadaka, S.R. & A. Sengupta. 2001. Topics in circular statistics. World Scientific. 

 

http://folk.uio.no/ohammer/past/ref.html
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Spherical (one sample) 

This module makes stereo plots of axial, spherical data (e.g. strike-dip measurements in structural 
geology), and performs the Bingham test for uniform distribution. 

 

Three data formats can be used, all using the geographic angle convention (degrees, clockwise from 
north): 

• Trend (azimuth) and plunge (angle down from the horizontal) for axial data 

• Dip azimuth and dip angle (down from the horizontal) for planes. The pole (normal vector) of 
the plane is plotted. 

• Strike and dip for planes, using the right-hand rule convention with the dip down to the right 
from the strike. The pole to the plane is plotted. 

Density contouring is based on a modified Kamb method algorithm by Vollmer (1995). Both equal 

area (Schmidt) and equal angle (Wulff) projections are available. Projections are to the lower 

hemisphere. Density estimates can use an inverse area, inverse area squared or exponential law, 

giving progressively higher smoothing. 

The Bingham test for uniform distribution of axial data can be used to test for preferred direction 

(Bingham 1974; Mardia & Jupp 2000, p. 232-233). Past computes the S statistic as follows. 

The sample scatter matrix is computed as 

𝑻̅ =
1

𝑛
∑𝒙𝒊𝒙𝒊

𝑻

𝑛

𝑖=1
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where xi is the 3-vector of direction cosines for sample i. Then, 

𝑆 =
15

2
𝑛 (tr(𝑻̅2) −

1

3
) 

An adjusted S is computed according to Jupp (2001): 

𝑆∗ = 𝑆 [1 −
1

𝑛
(𝐵0 + 𝐵1𝑆 + 𝐵2𝑆

2)] 

where 

𝐵0 =
31

42
, 𝐵1 = −

41

294
, 𝐵2 =

5

1323
 

When n<=50 and S<=30, the reported p value for uniformity is estimated from the S* value using the 

chi-squared distribution with 5 degrees of freedom. Otherwise, the S value is used (the polynomial 

equation for S* turns the wrong way for large S). A small p (e.g. p<0.05) means significantly non-

uniform distribution. 

 

References 

Bingham, C. 1974. An antipodally symmetric distribution on the sphere. Annals of Statistics 2:1201-

1225. 

Jupp, P.E. 2001. Modifications of the Rayleigh and Bingham tests for uniformity of directions. Journal 

of Multivariate Analysis 77:1-20. 

Mardia, K.V. & Jupp, P.E. 2000. Directional Statistics. John Wiley & Sons. 

Vollmer, F.W. 1995. C program for automatic contouring of spherical orientation data using a 

modified Kamb method. Computers & Geosciences 21:31-49. 
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Point pattern analysis - nearest neighbours 

This module tests for clustering or overdispersion of points given as two-dimensional coordinate 
values. The procedure assumes that elements are small compared to their distances, that the domain 
is predominantly convex, and n>50. Two columns of x/y positions are required. Applications of this 
module include spatial ecology (are in-situ brachiopods clustered), morphology (are trilobite 
tubercles overdispersed), and geology (distribution of e.g.  volcanoes, earthquakes, springs). 

 

The calculation of point distribution statistics using nearest neighbour analysis follows Davis (1986) 
with modifications. The area is estimated either by the smallest enclosing rectangle or using the 
convex hull, which is the smallest convex polygon enclosing the points. Both are inappropriate for 
points in very concave domains. Two different edge effect adjustment methods are available: wrap-
around ("torus") and Donnelly's correction.  Wrap-around edge detection is only appropriate for 
rectangular domains. 

The null hypothesis is a random Poisson process, giving a modified exponential nearest neighbour 
distribution (see below) with mean 

2

nA
=  

where  A is the area and n the number of points. 

The probability that the distribution is Poisson is presented, together with the R value:  

http://folk.uio.no/ohammer/past/ref.html
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where d is the observed mean distance between nearest neighbours. Clustered points give R<1, 
Poisson patterns give R~1, while overdispersed points give R>1.  

The expected (theoretical) distribution under the null hypothesis is plotted as a continuous curve 
together with the histogram of observed distances. The expected probability density function as a 
function of distance r is 

( ) ( )2πexpπ2 rrrg  −=  

where  = n/A is the point density (Clark & Evans 1954). 

  

The orientations (0-180 degrees) and lengths of lines between nearest neighbours, are also included. 

The orientations can be subjected to directional analysis to test whether the points are organised 

along lineaments (see Hammer 2009 for more advanced methods). 

 

References 

Clark, P.J. & Evans, F.C. 1954. Distance to nearest neighbor as a measure of spatial relationships in 

populations. Ecology 35:445-453. 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons. 

Hammer, Ø. 2009. New methods for the statistical analysis of point alignments. Computers & 

Geosciences 35:659-666. 
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Ripley’s K point pattern analysis 

Ripley's K (Ripley 1979) is the average point density as a function of distance from every point. It is 
useful when point pattern characteristics change with scale, e.g. overdispersion over small distances 
but clustering over large distances.  Two columns of x/y coordinates in a rectangular domain are 
expected. 

 

Define the estimated intensity of the point pattern, with n points in an area A, as An= . The 

distance between points i and j is dij The estimate of Ripley’s K, as a function of distance, is then 
computed as 
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where the indicator function I is one if the argument is true, zero otherwise. 

The normalization of K is such that for complete spatial randomness (CSR), K(d) is expected to 

increase as the area of circles, i.e.  ( ) 2ddK = . The L(d) function is a corresponding transformation 

of K(d): 

( )
( )


dK
dL =  

For CSR, L(d)=d, and L(d)-d=0. A 95% confidence interval for CSR is estimated using 1000 Monte Carlo 

simulations within the bounding rectangle (previous versions used the approximation nA42.1 ). 

http://folk.uio.no/ohammer/past/ref.html
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Ripley's edge correction is included, giving weights to counts depending on the proportion of the test 
circle that is inside the rectangular domain. 

The example above shows locations of volcanic pipes. L(d)-d is below the 95% confidence interval of 
CSR, indicating lateral inhibition, up to a distance of ca. 70 m. For larger distances, the curve flattens 
in the manner expected from CSR. 

 

Area  

For the correct calculation of Ripley's K, the area must be known. In the first run, the area is 
computed using the smallest bounding rectangle, but this can both over- and underestimate the real 
area. The area can therefore be adjusted by the user. An overestimated area will typically show up as 
a strong overall linear trend with positive slope for L(d)-d.  

 

Fractal dimension  

The fractal dimension (if any) can be estimated as the asymptotic linear slope in a log-log plot of K(d). 
For CSR, the log-log slope should be 2.0. Fractals should have slopes less than 2. 

 

References 

Ripley, B.D. 1979. Tests of 'randomness' for spatial point patterns. Journal of the Royal Statistical 

Society, ser. B 41:368-374. 
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Correlation length analysis 
Correlation length analysis (Cartwright & Whitworth 2004; Cartwright et al. 2011) investigates the 

spatial distribution of a point pattern at different scales, and is an alternative to Ripley’s K. Two 

columns of x/y coordinates in a rectangular domain are expected. CLA is simply a histogram of all 

pairwise distances between points, i.e. a total of N(N-1)/2 distances (black curve). 

 

The expected curve from a random point pattern (blue curve) and its 95% confidence interval (red 

curves) are computed from 1000 Monte Carlo simulations of complete spatial randomness (CSR) in a 

rectangle of the same dimensions as the bounding rectangle of the original data. Thus, distances 

where the CLA curve from the data (black curve) exceeds the upper red curve, have significantly 

higher frequencies than expected from a random pattern. 

An overall significance test is based on the observed total mean distance compared with the 

expected mean distance from the Monte Carlo simulations. 

The number of bins can be set by the user and should be small to reduce noise, but large enough to 

capture details. 

The “Residual” option flattens the curves on the expected mean (blue curve), i.e. the expected mean 

is subtracted from the curves at all distances. This can make the figure clearer especially when the 

confidence interval is narrow. 

A comparison between Ripley’s K and correlation length analysis for a geological data set is given by 

Cartwright et al. (2011). 

References 

Cartwright, A. & Whitworth, A.P. 2004. The statistical analysis of star clusters. Monthly Notices of the 

Royal Astronomical Society 348:589-597. 

Cartwright, A., Moss, J. & Cartwright, J. 2011. New statistical methods for investigating submarine 

pockmarks. Computers & Geosciences 37:1595-1601. 
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Minimal spanning tree analysis 
Minimal spanning tree analysis (Cartwright & Whitworth 2004; Cartwright et al. 2011) investigates 

the spatial distribution of a point pattern with focus on small scales, comparable to nearest neighbor 

analysis but with somewhat different properties. Two columns of x/y coordinates in a rectangular 

domain are expected. The method is based on a histogram of all the lengths of line segments in the 

minimal spanning tree (MST). The MST itself can be plotted in the XY graph module (Plot menu). 

The expected curve from a random point pattern (blue curve) and its 95% confidence interval (red 

curves) are computed from 1000 Monte Carlo simulations of complete spatial randomness (CSR) in a 

rectangle of the same dimensions as the bounding rectangle of the original data. Thus, segment 

lengths where the histogram from the data (black curve) exceeds the upper red curve, have 

significantly higher frequencies than expected from a random pattern. 

An overall significance test is based on the observed total mean length compared with the expected 

mean length from the Monte Carlo simulations. 

The number of bins can be set by the user and should be small to reduce noise, but large enough to 

capture details. 

The “Residual” option flattens the curves on the expected mean (blue curve), i.e. the expected mean 

is subtracted from the curves at all distances. This can make the figure clearer especially when the 

confidence interval is narrow. 

A comparison between nearest neighbour and minimal spanning tree analysis for a geological data 

set is given by Cartwright et al. (2011). 

 

References 

Cartwright, A. & Whitworth, A.P. 2004. The statistical analysis of star clusters. Monthly Notices of the 

Royal Astronomical Society 348:589-597 

Cartwright, A., Moss, J. & Cartwright, J. 2011. New statistical methods for investigating submarine 

pockmarks. Computers & Geosciences 37:1595-1601. 
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Kernel density 

Makes a smooth map of point density in 2D. Two columns of x/y coordinates in a rectangular domain 

are expected. The user can specify the size of the grid (number of rows and columns). The “Radius” 

value sets the scale r of the kernel. There is currently no automatic selection of “optimal” radius, so 

this value must be set by the user depending on the scale of interest. 

 

The density estimate is based on one of four kernel functions, with radius parameter r. With 
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The scaling gives an estimate of the number of points per area, not a probability density. The 

gaussian and paraboloid (quadratic) kernels usually perform best. The uniform kernel gives very low 

smoothness. 

 

Point alignments 

Detection of linear alignments in a 2D point pattern, using the continuous sector method (Hammer 

2009). Typical applications are in geology and geography, to study the distribution of earthquakes, 

volcanoes, springs etc. associated with faults and other linear structures. 

 

The Radius parameter sets the scale of analysis. In the example above, lineaments of length 1200 m 

(twice the radius) are detected. 

Alpha sets the significance level for the Rayleigh test used by the procedure. Note that this is a 

pointwise significance, not corrected for the multiple testing of all the points. 

The Dispersion filter disables alignments with uneven distribution of points along the lineament. 

View numbers lists the alignment positions and their orientations, which can be subjected to circular 

statistics if required (Directions module). 

Reference 

Hammer, Ø. 2009. New methods for the statistical detection of point alignments. Computers & 

Geosciences 35:659-666. 
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Quadrat counts 
This module provides statistics on the distribution of points in quadrats. The input data consist of a 

single column of counts of points in equal-sized quadrats (the order is arbitrary). For a random point 

pattern, the data are expected to follow a Poisson distribution. 

The Morisita index (Morisita 1959) is expected to have value Id=1 for a random pattern, Id<1 for an 

overdispersed (spaced) pattern, and Id>1 (up to Id=n) for a clustered pattern. It is computed as 

𝐼𝜕 = 𝑛
∑𝑥2 − ∑𝑥

(∑𝑥)2 − ∑𝑥
 

where n is the number of quadrats, and x are the counts. The significance test follows Morisita 

(1959), with F ratio 

𝐹0 =
𝐼𝜕(∑𝑥 − 1) + 𝑛 − ∑𝑥

𝑛 − 1
 

The degrees of freedom are n-1 and ∞. In addition, a Monte Carlo test is carried out with 9999 

replicates, each with random distribution of points on quadrats. 

The 95% confidence limits (lower and upper) around Id=1 (random pattern) are called the uniform 

and the clumped indices, respectively (Krebs 1999): 

𝑀𝑢 =
𝜒0.975

2 − 𝑛 + ∑𝑥

∑𝑥 − 1
 

𝑀𝑐 =
𝜒0.025

2 − 𝑛 + ∑𝑥

∑𝑥 − 1
 

Where χ2
0.975 is the 97.5 percentile point of the chi-squared distribution with n-1 degrees of freedom. 

The Standardized Morisita Index, MIS, was suggested by Smith-Gill (1975). It ranges from -1 to 1, with 

MIS=0 for a random pattern and with 95% confidence limits [-0.5, 0.5]. It is calculated as follows: 

𝐼𝛿 ≥ 𝑀𝑐 > 1:  𝑀𝐼𝑆 = 0.5 + 0.5
𝐼𝛿 − 𝑀𝑐

𝑛 − 𝑀𝑐
 

𝑀𝑐 > 𝐼𝛿 ≥ 1:  𝑀𝐼𝑆 = 0.5
𝐼𝛿 − 1

𝑀𝑐 − 1
 

1 > 𝐼𝛿 > 𝑀𝑢:  𝑀𝐼𝑆 = −0.5
𝐼𝛿 − 1

𝑀𝑢 − 1
 

1 > 𝑀𝑢 > 𝐼𝛿:  𝑀𝐼𝑆 = −0.5 + 0.5
𝐼𝛿 − 𝑀𝑢

𝑀𝑢
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References 

Krebs, C.J. 1999. Ecological Methodology, 2nd ed. Benjamin Cummings Publishers. 

Morisita, M. 1959. Measuring of the dispersion of individuals and analysis of the distributional 

patterns. Memoirs of the Faculty of Science, Kyushu University, Series E (biology) 2:215-235. 

Smith-Gill, S. J. 1975. Cytophysiological basis of disruptive pigmentary patterns in the leopard frog, 

Rana pipiens. II. Wild type and mutant cell specific patterns. Journal of Morphology 146:35–54. 
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Spatial autocorrelation (Moran’s I) 
Spatial autocorrelation in Past requires three columns, containing x and y coordinates and 

corresponding data values z for a number of points. The Moran’s I correlation statistic is then 

computed within each  of a number of distance classes (bins), ranging from small to large distances. 

The one-tailed critical value for p<0.05 can be plotted for each bin. Moran’s I values exceeding the 

critical value may be considered significant, but Bonferroni or other adjustment for multiple testing 

should be considered because of the several bins. 

 

 

 

The calculation follows Legendre & Legendre (1998). For each distance class d, compute 
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Here, n is the total number of points, W is the number of pairs of points having distances within the 

distance class, and whi a weight function such that whi=1 if points h and i are within the distance class 

and whi=0 otherwise (Kronecker delta). Note that this equation is incorrect in some publications. 

For the one-tailed critical level I0.05, compute 
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Here the wi+ and w+i are the row and column sums. The correction factor k0.05 is set to 

707.005.010 =  if ( ) ( )13244 +−− nnWnn , otherwise k0.05=1. 

 

Reference 

Legendre, P. & Legendre, L. 1998. Numerical Ecology, 2nd English ed. Elsevier, 853 pp. 
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Gridding (spatial interpolation) 

“Gridding” is the operation of spatial interpolation of scattered 2D data points onto a regular grid. 

Three columns with position (x,y) and corresponding data values are required.  

Gridding produces a map showing a continuous spatial estimate of some variate such as fossil 

abundance or thickness of a rock unit, based on scattered data points. The user can specify the size 

of the grid (number of rows and columns). The spatial coverage of the map is set to a square covering 

the data points. When plotting, this can be reduced to the convex hull of the points. 

 

A least-squares linear surface (trend) is automatically fitted to the data, removed prior to gridding 

and finally added back in. This is primarily useful for the semivariogram modelling and the kriging 

method.  

Cross validation: This option will remove each data point in turn and re-compute the surface based 

on the remaining points (“jackknife”). The differences between the original data values and the cross-

validated values indicate the prediction accuracy of the surface model. These differences are 

reported for each point, together with the mean squared error (MSE) over all points. 

Four interpolation algorithms are available:  

Inverse distance weighting 

The value at a grid node is simply the average of the N closest data points, as specified by the user 

(the default is to use all data points). The points are weighted in inverse proportion to distance. This 

algorithm is fast but will not always give good (smooth) results. A typical artefact is “bull’s eyes” 

around data points. One advantage is that the interpolated values will never exceed the range of the 

data points. By setting N=1, this algorithm reduces to the nearest-neighbour method, which sets the 

value at a grid node to the value of the nearest data point. 
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Thin-plate spline 

Maximally smooth interpolator. Can overshoot in the presence of sharp bends in the surface. This is a 

radial basis method with radial basis function φ = r ln r. 

Multiquadric 

Radial basis function φ = r. Popular for terrain modelling. 

Kriging 

The user is required to specify a model for the semivariogram, by choosing one of four common 

models and corresponding parameters to fit the empirical semivariances (the residual sum of squares 

should be as small as possible). The semivariogram is computed within each of a number of bins. 

Using the histogram option, choose a number of bins so that each bin (except possibly the rightmost 

ones) contains at least 30 distances. 

The nugget is a constant added to the model. It implies non-zero variance at zero distance and will 

therefore allow the surface to not pass exactly through the given data points. The range controls the 

extent of the curve along the distance axis. In the equations below, the normalized distance value h 

represents distance/range. The scale controls the extent of the curve along the variance axis. 
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The “Optimize all” button will select the model and parameters giving the smallest residual sum of 

squares in the semivariogram. This may not be what you want: You may wish to use a specific model 

or to have zero nugget to ensure exact interpolation. You must then set the values manually. 

The kriging procedure also provides an estimate of standard errors across the map (this depends on 

an accurate semivariogram model). Kriging in PAST does not provide for anisotropic semivariance. 

Warning: Kriging is slow, do not attempt it for more than ca. 1000 data points on a 100x100 grid. 

See e.g. Davis (1986) or de Smith et al. (2009) for more information on gridding. 

References 

Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons. 

de Smith, M.J., M.F. Goodchild & P.A. Longley. 2009. Geospatial Analysis, 3rd ed. Matador. 

  



262 

 



263 

 

Multivariate allometry 

This module is used for investigating allometry in a multivariate morphometric data set. It expects a 

multivariate data set with variables (distance measurements) in columns, specimens in rows. 

This method for investigating allometry in a multivariate data set is based on Jolicoeur (1963) with 

extensions by Kowalewski et al. (1997). The data are (automatically) log-transformed and subjected 

to PCA. The first principal component (PC1) is then regarded as a size axis (this is only valid if the 

variation accounted for by PC1 is large, say more than 80%). The allometric coefficient for each 

original variable is estimated by dividing the PC1 loading for that variable by the mean PC1 loading 

over all variables.  

95% confidence intervals for the allometric coefficients are estimated by bootstrapping specimens. 

2000 bootstrap replicates are made.  

Missing data is supported by column average substitution. 

References 

Jolicoeur, P. 1963. The multivariate generalization of the allometry equation. Biometrics 19:497-499. 

Kowalewski, M., E. Dyreson, J.D. Marcot, J.A. Vargas, K.W. Flessa & D.P. Hallmann. 1997. Phenetic 

discrimination of biometric simpletons: paleobiological implications of morphospecies in the lingulide 

brachiopod Glottidia. Paleobiology 23:444-469. 

 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html


264 

 

PCA of 2D landmarks (relative warps) 

This module is very similar to the standard PCA module, but with some added functionality for 
analyzing 2D landmark configurations. The expected data are specimens in rows, alternating x and y 
coordinates in columns. Procrustes standardization recommended. 

The relative warps (principal components) are ordered according to importance, and the first and 
second warps are usually the most informative. Note that this module does a straightforward PCA of 
the landmarks, meaning that the affine component is included in the analysis. 

The relative warps are visualized with vectors and/or thin-plate spline transformation grids. When 
you increase or decrease the score factor away from zero, the original landmark configuration and 
grid will be progressively deformed according to the selected relative warp. Vectors are drawn from 
the mean to the deformed (dot) landmark position. 
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Thin-plate splines for 2D landmarks 

This module shows a shape deformation from one landmark configuration to another. The expected 
data are specimens in rows, alternating x and y coordinates in columns. Procrustes standardization 
recommended. 

Any shape selected in the “From shape” menu, is taken as a reference, with an associated square 
grid. The warps from this to all other specimens can be viewed. You can also choose the mean shape 
as the reference.  

The ‘Expansion factors’ option will display the area expansion (or contraction) factor around each 
landmark in yellow numbers, indicating the degree of local growth. This is computed using the 
Jacobian of the warp. Also, the expansions are colour-coded for all grid elements, with green for 
expansion and purple for contraction.  

At each landmark, the principal strains can also be shown, with the major strain in black and minor 
strain in brown. These vectors indicate directional stretching.  

A description of thin-plate spline transformation grids is given by Dryden & Mardia (1998). 

Partial warps and scores 

From the thin-plate spline window, you can choose to see the partial warps for a particular spline 
deformation. The first partial warp will represent some long-range (large scale) deformation of the 
grid, while higher-order warps are normally connected with more local deformations. The affine 
component of the warp (also known as zeroth warp) represents linear translation, scaling, rotation, 
and shearing. 

When you increase the amplitude factor from zero, the original landmark configuration and a grid 
will be progressively deformed according to the selected partial warp.  

The partial warp scores of all the specimens are given in a table. Each partial warp score has two 
components (x and y). 

Reference 

Dryden, I.L. & K.V. Mardia 1998. Statistical Shape Analysis. Wiley. 

 

Linear regression of 2D landmarks 

Expects specimens in rows, with a single column of independent data (e.g. size) followed by pairs of 
columns with Procrustes-fitted landmark positions. Output includes deformation grids and 
displacement vectors, drawn from the mean to the deformed (dots) landmark positions. 
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Common Allometric Component analysis for 2D landmarks 

Common Allometric Component (CAC) analysis for landmarks was first suggested by Mitteroecker et 
al. (2004). The principle is simple and logical: Do a linear regression of shape as a function of size (the 
allometric component) and then a PCA on the residuals (the residual shape components). The 
required data are one column of sizes, followed by pairs of columns containing Procrustes-fitted x-y 
coordinates of the landmarks. The data can be obtained from the original landmarks using the 
“Transform->Landmarks->Procrustes” function, and selecting “Add size column”. A final feature of 
CAC analysis is that if groups are specified, then the data are centered on group means prior to 
analysis, effectively removing inter-group variation. 

X is the nxm matrix of (Procrustes-fitted) shape coordinates, centered on group means. s is the n-
vector with the logarithms of centroid sizes (in Past you can also choose to skip the log-transform of 
size). The vector of the “common allometric component” is 

𝐚 =
𝐗𝑡𝐬

𝐬𝑡𝐬
 

normalized as a’=a/√ata. This common allometric component is projected out to produce a reduced 
data matrix 

𝐖 = 𝐗(𝐈 − 𝒂′(𝒂′)𝑡) 

The principal components of W constitute the residual shape components. In Past, you can produce 
scatter plots of scores on the common allometric component and the residual shape components, 
and landmark deformations along all components can be visualized using vector displacements and 
thin-plate spline grids, relative to mean shape. 

Reference 

Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., Bookstein, F.L. 2004. Comparison of cranial 
ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46:679-698. 
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PCA of 3D landmarks 

Specimens in rows, 3D landmarks in triplets of columns (should be Procrustes-fitted first). The 
module is similar to the standard PCA module, but allows visualization of the principal components 
as 3D vectors (arrows) away from the mean configuration. 
 

 

Linear regression of 3D landmarks 

Expects specimens in rows, with a single column of independent data (e.g. size) followed by triplets 
of columns with Procrustes-fitted landmark positions. Output includes 3D plot of the displacement 
vectors, drawn from the mean to the deformed landmark positions. 

Common Allometric Component analysis for 3D landmarks 

See above for a description of CAC for 2D landmarks. Expects specimens in rows, with a single 
column of sizes followed by triplets of columns with Procrustes-fitted landmark positions. In this 
module, the displacement vectors can be visualized in 3D. 
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Size from landmarks (2D or 3D) NOT YET IN PAST 4 

Digitized x/y or x/y/z landmark coordinates. Specimens in rows, coordinates with alternating x and y 
(and z for 3D) values in columns. Must not be Procrustes fitted or normalized for size!  

Calculates the centroid size for each specimen (Euclidean norm of the distances from all landmarks to 
the centroid).  

The values in the 'Normalized' column are centroid sizes divided by the square root of the number of 
landmarks - this might be useful for comparing specimens with different numbers of landmarks.  

Normalize size  

The 'Normalize size' option in the Transform menu allows you to remove size by dividing all 
coordinate values by the centroid size for each specimen. For 2D data you may instead use 
Procrustes coordinates, which are also normalized with respect to size.  

See Dryden & Mardia (1998), p. 23-26. 

Reference 

Dryden, I.L. & K.V. Mardia 1998. Statistical Shape Analysis. Wiley.

http://folk.uio.no/ohammer/past/ref.html
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Distance from landmarks (2D or 3D) NOT YET IN PAST 4 

Digitized x/y or x/y/z landmark coordinates. Specimens in rows, coordinates with alternating x and y 
(and z for 3D) values in columns. May or may not be Procrustes fitted or normalized for size. 

Calculates the Euclidean distances between two fixed landmarks for one or many specimens. You 
must choose two landmarks - these are named according to the name of the first column for the 
landmark (x value). 

All distances from landmarks (EDMA) NOT YET IN PAST 3 

Digitized x/y or x/y/z landmark coordinates. Specimens in rows, coordinates with alternating x and y 
(and z for 3D) values in columns. May or may not be Procrustes fitted or normalized for size. 

This function will replace the landmark data in the data matrix with a data set consisting of distances 
between all pairs of landmarks, with one specimen per row. The number of pairs is N(N-1)/2 for N 
landmarks. This transformation will allow multivariate analysis of distance data, which are not 
sensitive to rotation or translation of the original specimens, so a Procrustes fitting is not mandatory 
before such analysis. Using distance data also allows log-transformation, and analysis of fit to the 
allometric equation for pairs of distances.  

Missing data is supported by column average substitution. 
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Edit landmark lines/polygons 

This function in the Geometry menu under Landmarks (2D) and Landmarks (3D) allows the selection 
of landmarks to be linked with lines in the morphometric plots (PCA, thin-plate splines, etc.), to 
improve readability. The landmarks must be present in the main spreadsheet before links can be 
defined.  

The window contains a list of lines or closed polygons. In the example below, the user has specified 
one polygon (consisting of four landmarks) and one line (two landmarks). Click on a landmark and 
press the Delete key to delete it from the list. The data will be written to the Past file when saved. 
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Elliptic Fourier shape analysis 

Requires digitized x/y coordinates around outlines. Specimens in rows, coordinates of alternating x 
and y values in columns. Elliptic Fourier shape analysis is in several respects superior to simple 
Fourier shape analysis. One advantage is that the algorithm can handle complicated shapes which 
may not be expressible as a unique function in polar co-ordinates. Elliptic Fourier shapes is now a 
standard method of outline analysis. The algorithm used in PAST is described by Ferson et al. (1985). 

EFA coefficients 

Cosine and sine components of x and y increments along the outline for the first 30 harmonics are 
given, but only the first N/2 harmonics should be used, where N is the number of digitized points. 
Size and positional translation are normalized away, and do not enter in the coefficients. The size 
(before normalization) is given in the first column. The optional standardization for rotation or 
starting point, following Ferson et al., sometimes flips shapes around . This should be checked with 
the ‘Shape view’ (see below) – it may be necessary to remove such specimens. 

The coefficients can be copied to the main spreadsheet for further analysis such as PCA and 
discriminant analysis. 

The ‘Shape view’ window allows graphical viewing of the elliptic Fourier shape approximation(s). 

EFA PCA 

Principal Components Analysis of the EFA coefficients of the given outlines, with visualization of the 
principal components as EFA deformations. For more details on PCA in Past, see the description of 
PCA. 

 

Reference 

Ferson, S.F., F.J. Rohlf & R.K. Koehn. 1985. Measuring shape variation of two-dimensional outlines. 
Systematic Zoology 34:59-68. 

http://folk.uio.no/ohammer/past/ref.html
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Hangle Fourier shape analysis 

Requires digitized x/y coordinates around outlines. Specimens in rows, coordinates of alternating x 
and y values in columns. 

The “Hangle” method for analysing closed outlines, proposed by Haines & Crampton (2000) is a 
competitor to Elliptic Fourier Analysis. Hangle has certain advantages over EFA, the most important 
being that fewer coefficients are needed to capture the outline to a given precision. This is of 
importance for statistical testing (e.g. MANOVA) and discriminant analysis. The implementation in 
Past is based on the Hangle/Hmatch/Htree/Hshape package of Haines & Crampton (thanks to the 
authors for providing the source code). 

The output consists of 46 Fourier coefficients, which are the cos and sin coefficients of the first 24 
harmonics (modes), starting on harmonic number 2. Copy these numbers back to a Past spreadshhet 
for further multivariate shape analysis. 

Starting point normalization 

Usually leave at ‘Match all’, either with the ‘Hmatch’ or (perhaps preferably) the ‘Htree’ method to 
align all the outlines. Alternatively, select 2.-4. harmonic, which will phase shift each outline 
according to the selected mode (see Haines & Crampton 2000). 

Smoothing 

Increasing the smoothing parameter can reduce high-frequency noise, at the cost of dampening 
potentially informative high-frequency shape information. 

Shape view 

Use this function to inspect the shapes reconstructed from the Fourier coefficients. Check that the 
matching routine has not rotated any shape incorrectly. Also, use this function to select the minimum 
number of modes necessary for capturing the shape. In the example above, the number of modes 
has been set to 14, which captures 99.88% of the total integrated power (amplitude squared) of the 
selected shape. The number of modes is shown by the red line in the power spectrum – make sure 
that the main features of the spectrum are to the left of this line for all the shapes. 

Note:  PCA visualization and regression (as for EFA) has not yet been implemented for Hangle. 

 

Reference 

Haines, A.J. & J.S. Crampton. 2000. Improvements to the method of Fourier shape analysis as applied 
in morphometric studies. Palaeontology 43:765-783 
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Eigenshapes 

Eigenshape analysis (Lohmann, 1983; Rohlf, 1986; MacLeod, 1999) can, somewhat imprecisely, be 

thought of as PCA of the raw outlines, without going through a transformation stage such as Fourier 

analysis. Past carries out the following steps: 

1. Produce an equally spaced set of points by interpolation between the original points. The number 

of interpolated points along the outline is optimized automatically. 

2. Going along the outline from a fixed point (homologous on all outlines), calculate the tangent 

angle from one point to the next. For m interpolated points on a closed outline there are m tangent 

angles, constituting a vector φ describing the shape. 

Given a set of n equally spaced (x, y)-coordinates around a contour, the tangent angles are calculated 

in the following way (modified after Zahn and Roskies, 1972). First, compute the angular orientations 

of the tangent to the curve: 

𝜑𝑖 = tan−1
𝑦𝑖 − 𝑦𝑖−1

𝑥𝑖 − 𝑥𝑖−1
 

For a closed contour of n points, we use 

𝜑1 = tan−1
𝑦1 − 𝑦𝑛

𝑥1 − 𝑥𝑛
 

This vector is then normalized by subtracting the angular orientations that would be observed for a 

circle: 

𝜑𝑖
∗ = 𝜑𝑖 − 𝜑1 −

2𝜋(𝑖 − 1)

𝑛
 

3. The shape vectors for the n shapes are subjected to PCA, giving principal components that are 

referred to as eigenshapes. The eigenshapes are themselves tangent angle vectors, given in 

decreasing order of amount of shape variation they explain. The first (most important) eigenshapes 

define a low-dimensional space into which the original specimens can be projected. 

References 

Lohmann, G.P. 1983. Eigenshape analysis of microfossils: a general morphometric method for 
describing changes in shape. Mathematical Geology 15: 659–672. 

MacLeod, N. 1999. Generalizing and extending the eigenshape method of shape space visualization 
and analysis. Paleobiology 25: 107–138. 

Rohlf, F.J. 1986. Relationships among eigenshape analysis, Fourier analysis and analysis of 
coordinates. Mathematical Geology 18: 845–854. 

Zahn, C.T., Roskies, R.Z. 1972. Fourier descriptors for plane closed curves. IEEE Transactions, 
Computers C-21: 269–281.  
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Coordinate transformation 

Conversion between geographical coordinates in different grids and datums. The number of input 

columns depends on the data type, as described below. 

Decimal degrees (WGS84) 

Two columns: Latitude and longitude, in decimal degrees (60.5 is 60 degrees, 30 minutes). Negative 

values for south of equator and west of Greenwich. Referenced to the WGS84 datum. 

Deg/decimal mins (WGS84) 

Four columns: Latitude degrees, deci mal minutes (40.5 is 40 minutes, 30 seconds), longitude 

degrees, decimal minutes. Referenced to the WGS84 datum. 

Deg/min/sec (WGS84) 

Six columns: Latitude degrees, minutes, seconds, longitude degrees, minutes, seconds. Referenced to 

the WGS84 datum. 

UTM-ED50 (Intl 1924) 

Three columns: Easting (meters), northing (meters), and zone. Use negative zone numbers for the 

southern hemisphere. The handling of UTM zones takes into account the special cases of Svalbard 

and western Norway. Referenced to the ED50 European datum at Potsdam. 

UTM-WGS84 (WGS84) 

Three columns: Easting (meters), northing (meters), and zone. Referenced to the WGS84 datum. 

UTM-NAD27 (Clarke 1866) 

Three columns: Easting (meters), northing (meters), and zone. Referenced to the NAD27 datum. 

Conversion to/from this format is slightly inaccurate (5-6 meters). 

UTM-NAD83 (GRS80) 

Three columns: Easting (meters), northing (meters), and zone. Referenced to the NAD83 datum 

(practically identical to WGS84). 

Sweden (RT90) 

Two columns: Easting (meters) and northing (meters). 

The transformations are based on code generously provided by I. Scollar.  
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Open Street Map 
Takes two columns of latitudes and longitudes in decimal degrees (WGS84) and shows an Open 

Street Map window with graphic elements at the given coordinates in one of these ways: 

• Points with symbols and colours taken from the Past spreadsheet 

• Filled polygons. The colour is taken from the row colour of the first point. Use an additional 

group column to specify multiple polygons. 

• Multi-segment lines, with colour and groups as for filled polygons 

• Bubbles, with the radius in km of each bubble given in the third data column. 

• Pie charts, with multiple data columns starting in the third column. 

An optional third column can be used to specify the sizes of bubbles (radius in km) or thicknesses of 

lines (pixels). 

This module requires Internet connection. 
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Measure on image 
A simple tool to digitize point co-ordinates, distances and directions on images. Click “Open” to open  
an image. A list of measurements is given on the right. If you start this tool with selected data in the  
main spreadsheet, these data will be pre-loaded into the measurement list. The measurement list  
can be copy-pasted back to the Past spreadsheet with the “Copy all” button. 
 
New measurements will enter in the selected row in the list. You can move a point by clicking on the  
row in the list, then clicking on the new position in the image. You can also delete or insert points in  
the list. 
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Stratigraphy menu 

Unitary Associations 

Unitary Associations analysis (Guex 1991) is a method for biostratigraphical correlation (see Angiolini 
& Bucher 1999 for a typical application). The data input consists of a presence/absence matrix with 
samples in rows and taxa in columns. Samples belonging to the same section (locality) must be 
assigned to the same group, and ordered stratigraphically within each section such that the 
lowermost sample enters in the lowest row. 

   

 

Overview of the method  

The method of Unitary Associations is logical, but rather complicated, consisting of a number of 
steps. For details, see Guex (1991). The implementation in PAST includes most of the features found 
in the original program, called BioGraph (Savary & Guex 1999), and thanks to a fruitful co-operation 
with Jean Guex it also includes a number of additional options and improvements.  

The basic idea is to generate a number of assemblage zones (similar to 'Oppel zones') which are 
optimal in the sense that they give maximal stratigraphic resolution with a minimum of 
superpositional contradictions. One example of such a contradiction would be a section containing a 
species A above a species B, while assemblage 1 (containing species A) is placed below assemblage 2 
(containing species B). PAST carries out the following steps:  

 

 

 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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1. Residual maximal horizons  

The method makes the range-through assumption, meaning that taxa are considered to have been 
present at all levels between the first and last appearance in any section. Then, any samples with a 
set of taxa that is contained in another sample are discarded. The remaining samples are called 
residual maximal horizons. The idea behind this throwing away of data is that the absent taxa in the 
discarded samples may simply not have been found even though they originally existed. Absences 
are therefore not as informative as presences.  

 

2. Superposition and co-occurrence of taxa  

Next, all pairs (A,B) of taxa are inspected for their superpositional relationships: A below B, B below 
A, A together with B, or unknown. If A occurs below B in one locality and B below A in another, they 
are considered to be co-occurring although they have never actually been found together.  

The superpositions and co-occurrences of taxa can be viewed in the biostratigraphic graph. In this 
graph, taxa are coded as numbers. Co-occurrences between pairs of taxa are shown as solid blue 
lines. Superpositions are shown as dashed red lines, with long dashes from the above-occurring 
taxon and short dashes from the below-occurring taxon.  

  

Some taxa may occur in so-called forbidden sub-graphs, which indicate inconsistencies in their 
superpositional relationships. Two of the several types of such sub-graphs can be plotted in PAST: Cn 
cycles, which are superpositional cycles (A->B->C->A), and S3 circuits, which are inconsistencies of the 
type 'A co-occurring with B, C above A, and C below B'. Interpretations of such forbidden sub-graphs 
are suggested by Guex (1991).  
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3. Maximal cliques  

Maximal cliques are groups of co-occurring taxa not contained in any larger group of co-occurring 
taxa. The maximal cliques are candidates for the status of unitary associations, but will be further 
processed below. In PAST, maximal cliques receive a number and are also named after a maximal 
horizon in the original data set which is identical to, or contained in (marked with asterisk), the 
maximal clique.  

 

4. Superposition of maximal cliques  

The superpositional relationships between maximal cliques are decided by inspecting the 
superpositional relationships between their constituent taxa, as computed in step 2. Contradictions 
(some taxa in clique A occur below some taxa in clique B, and vice versa) are resolved by a 'majority 
vote'. The contradictions between cliques can be viewed in PAST.  

The superpositions and co-occurrences of cliques can be viewed in the maximal clique graph. In this 
graph, cliques are coded as numbers. Co-occurrences between pairs of cliques are shown as solid 
blue lines. Superpositions are shown as dashed red lines, with long dashes from the above-occurring 
clique and short dashes from the below-occurring clique. Also, cycles between maximal cliques (see 
below) can be viewed as green lines.  

 

5. Resolving cycles  

It will sometimes be the case that maximal cliques are now ordered in cycles: A is below B, which is 
below C, which is below A again. This is clearly contradictory. The 'weakest link' (superpositional 
relationship supported by fewest taxa) in such cycles is destroyed.  

 

6. Reduction to unique path  

At this stage, we should ideally have a single path (chain) of superpositional relationships between 
maximal cliques, from bottom to top. This is however often not the case, for example if A and B are 
below C, which is below D, or if we have isolated paths without any relationships (A below B and C 
below D). To produce a single path, it is necessary to merge cliques according to special rules.  

 

7. Post-processing of maximal cliques  

Finally, a number of minor manipulations are carried out to 'polish' the result: Generation of the 
'consecutive ones' property, reinsertion of residual virtual co-occurrences and superpositions, and 
compaction to remove any generated non-maximal cliques. For details on these procedures, see 
Guex (1991). At last, we now have the Unitary Associations, which can be viewed in PAST.  

http://folk.uio.no/ohammer/past/ref.html
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The unitary associations have associated with them an index of similarity from one UA to the next, 
called D:  

Di=|UAi-UAi-1| / |UAi| +|UAi-1-UAi| / |UAi-1|  

 

8. Correlation using the Unitary Associations  

The original samples are now correlated using the unitary associations. A sample may contain taxa 
which uniquely places it in a unitary association, or it may lack key taxa which could differentiate 
between two or more unitary associations, in which case only a range can be given. These 
correlations can be viewed in PAST.  

 

9. Reproducibility matrix  

Some unitary associations may be identified in only one or a few sections, in which case one may 
consider to merge unitary associations to improve the geographical reproducibility (see below). The 
reproducibility matrix should be inspected to identify such unitary associations. A UA which is 
uniquely identified in a section is shown as a black square, while ranges of UAs (as given in the 
correlation list) are shown in gray.  

 

10. Reproducibility graph and suggested UA merges (biozonation)  

The reproducibility graph (Gk' in Guex 1991) shows the superpositions of unitary associations that 
are actually observed in the sections. PAST will internally reduce this graph to a unique maximal path 
(Guex 1991, section 5.6.3), and in the process of doing so it may merge some UAs. These mergers are 

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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shown as red lines in the reproducibility graph. The sequence of single and merged UAs can be 
viewed as a suggested biozonation. 

  

Special functionality  

The implementation of the Unitary Associations method in PAST includes a number of options and 
functions which have not yet been described in the literature. For questions about these, please 
contact us. 

 

References 

Angiolini, L. & H. Bucher. 1999. Taxonomy and quantitative biochronology of Guadalupian 
brachiopods from the Khuff Formation, Southeastern Oman. Geobios 32:665-699. 

Guex, J. 1991. Biochronological Correlations. Springer Verlag. 

Savary, J. & J. Guex. 1999. Discrete Biochronological Scales and Unitary Associations: Description of 
the BioGraph Computer Program. Meomoires de Geologie (Lausanne) 34. 
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Ranking-Scaling 

Ranking-Scaling (Agterberg & Gradstein 1999) is a method for quantitative biostratigraphy based on 
events in a number of wells or sections. The data input consists of wells in rows with one well per 
row, and events (e.g. FADs and/or LADs) in columns. The values in the matrix are depths of each 
event in each well, increasing upwards (you may want to use negative values to achieve this). 
Absences are coded as zero. If only the order of events is known, this can be coded as increasing 
whole numbers (ranks, with possible ties for co-occurring events) within each well.  

The implementation of ranking-scaling in PAST is not comprehensive, and advanced users are 
referred to the RASC and CASC programs of Agterberg and Gradstein.  

Overview of the method  

The method of Ranking-Scaling proceeds in two steps:  

1. Ranking  

The first step of Ranking-Scaling is to produce a single, comprehensive stratigraphic ordering of 
events, even if the data contains contradictions (event A over B in one well, but B over A in another), 
or longer cycles (A over B over C over A). This is done by 'majority vote', counting the number of 
times each event occurs above, below or together with all others. Technically, this is achieved by 
Presorting followed by the Modified Hay Method (Agterberg & Gradstein 1999).  

2. Scaling  

The biostratigraphic analysis may end with ranking, but additional insight may be gained by 
estimating stratigraphic distances between the consecutive events. This is done by counting the 
number of observed superpositional relationships (A above or below B) between each pair (A,B) of 
consecutive events. A low number of contradictions implies long distance.  

Some computed distances may turn out to be negative, indicating that the ordering given by the 
ranking step was not optimal. If this happens, the events are re-ordered and the distances re-
computed in order to ensure only positive inter-event distances.  

RASC in PAST  

Parameters  

• Well threshold: The minimum number of wells in which an event must occur in order to be 
included in the analysis  

• Pair threshold: The minimum number of times a relationship between events A and B must 
be observed in order for the pair (A,B) to be included in the ranking step  

• Scaling threshold: Pair threshold for the scaling step  
• Tolerance: Used in the ranking step (see Agterberg & Gradstein)  

Ranking  

The ordering of events after the ranking step is given, with the first event at the bottom of the list. 
The "Range" column indicates uncertainty in the position.  

http://folk.uio.no/ohammer/past/ref.html
http://www.micropress.org/q-strat/
http://folk.uio.no/ohammer/past/ref.html
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Scaling  

The ordering of the events after the scaling step is given, with the first event at the bottom of the list. 
For an explanation of all the columns, see Agterberg & Gradstein (1999).  

Event distribution  

A plot showing the number of events in each well, with the wells ordered according to number of 
events.  

Scattergrams  

For each well, the depth of each event in the well is plotted against the optimum sequence (after 
scaling). Ideally, the events should plot in an ascending sequence.  

Dendrogram  

Plot of the distances between events in the scaled sequence, including a dendrogram which may aid 
in zonation. 

Variance analysis 

For each event, this function plots the deviations from the line of correlation (see above) across all 
the wells. This gives a graphical representation of the biostratigraphic quality of each event. 

 

Reference 

Agterberg, F.P. & F.M. Gradstein. 1999. The RASC method for Ranking and Scaling of Biostratigraphic 
Events. In: Proceedings Conference 75th Birthday C.W. Drooger, Utrecht, November 1997. Earth 
Science Review 46(1-4):1-25.

http://folk.uio.no/ohammer/past/ref.html
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Constrained optimization (CONOP) 

Table of depths/levels, with wells/sections in rows and event pairs in columns: FADs in odd columns 
and LADs in even columns. Missing events coded with zeros. 

PAST includes a simple version of Constrained Optimization (Kemple et al. 1989). Both FAD and LAD 
of each taxon must be specified in alternate columns. Using so-called Simulated Annealing, the 
program searches for a global (composite) sequence of events that implies a minimal total amount of 
range extension (penalty) in the individual wells/sections. The parameters for the optimization 
procedure include an initial annealing temperature, the number of cooling steps, the cooling ratio 
(percentage lower than 100), and the number of trials per step. For explanation and 
recommendations, see Kemple et al. (1989).  

Output windows include the optimization history with the temperature and penalty as function of 
cooling step, the global composite solution and the implied ranges in each individual section.  

The implementation of CONOP in PAST is based on a FORTRAN optimization core provided by Sadler 
and Kemple. 

 

Reference 

Kemple, W.G., P.M. Sadler & D.J. Strauss. 1989. A prototype constrained optimization solution to the 
time correlation problem. In Agterberg, F.P. & G.F. Bonham-Carter (eds), Statistical Applications in 
the Earth Sciences. Geological Survey of Canada Paper 89-9:417-425. 

  

http://folk.uio.no/ohammer/past/ref.html
http://folk.uio.no/ohammer/past/ref.html
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Range confidence intervals 

Estimation of confidence intervals for first or last appearances or total stratigraphic range, for one 
taxon. 

Assuming a random (Poisson) distribution of fossiliferous horizons, and given the first occurrence 
datum (level), last occurrence datum, and total number of horizons where the taxon is found, we can 
calculate confidence intervals for the stratigraphic range of one taxon (Strauss & Sadler 1989, 
Marshall 1990). 

No data are needed in the spreadsheet. The program will ask for the number of horizons where the 
taxon is found, and levels or dates for the first and last appearances. If necessary, use negative values 
to ensure that the last appearance datum has a higher numerical value than the first appearance 
datum. 80%, 95% and 99% confidence intervals are calculated for the FAD considered in isolation, the 
LAD considered in isolation, and the total range. 

The value α is the length of the confidence interval divided by the length of the observed range. 

For the single endpoint case: 

𝛼 = (1 − 𝐶1)
−1 (𝐻−1)⁄ − 1 

where C1 is the confidence level and H the number of fossiliferous horizons. 

For the joint endpoint (total range) case, α is found by iterative solution of the equation 

𝐶2 = 1 − 2(1 + 𝛼)−(𝐻−1) + (1 + 2𝛼)−(𝐻−1) 

The assumption of random distribution will of course not hold in many real situations. 

Solow’s method 

Past also includes a method due to Solow (2003) that does not assume a uniform (stationary) 
distribution of finds. It only uses the occurrence datums of the lowest, second lowest, highest and 
second highest finds. 

References 

Marshall, C.R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:1-10. 

Solow, A.R. 2003. Estimation of stratigraphic ranges when fossil finds are not randomly distributed. 
Paleobiology 29:181-185.  

Strauss, D. & P.M. Sadler. 1989. Classical confidence intervals and Bayesian probability estimates for 
ends of local taxon ranges. Mathematical Geology 21:411-427. 
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Distribution-free range confidence intervals 

Estimation of confidence intervals for first or last appearances. Assumes there is no correlation 
between stratigraphic position and gap size. Section should be continuously sampled. Expects one 
column per taxon, with levels or dates of all horizons where the taxon is found. This method 
(Marshall 1994) does not assume random distribution of fossiliferous horizons. It does require that 
the levels or dates of all horizons containing the taxon are given. The program outputs upper and 
lower bounds on the lengths of the confidence intervals, using a 95 percent confidence probability, 
for confidence levels of 50, 80 and 95 percent. Values which cannot be calculated are marked with an 
asterisk (see Marshall 1994). 

 

Reference 

Marshall, C.R. 1994. Confidence intervals on stratigraphic ranges: partial relaxation of the assumption 
of randomly distributed fossil horizons. Paleobiology 20:459-469. 
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Stratigraphic chart 

This flexible plotting module can produce well logs and logs of stratigraphic sections. It provides for 
multiple plots, called panels, of different types, making it possible to combine e.g. biozones, 
lithology, geochemical and geophysical logs and pollen diagram in one figure. The plotting setup is 
automatically saved in your Past file together with the data in the spreadsheet. 

Note: This module is under construction; expect bugs and lack of features. Especially, you should not 
delete, add or rearrange columns in the spreadsheet while working with a stratigraphic chart, this 
will cause unpredictable behaviour. 

 

The spreadsheet should contain one or more columns of stratigraphic levels (typically meter levels), 
and several columns of data collected at the given levels. When opening the module you will see a 
blank page. Use the “Add panel” button to add plots. The Zoom buttons are useful for navigating in 
large charts. 

Global settings 

Above the plot are found the settings affecting all the panels. The Chart height is the height of the 
chart in pixels. The Bottom and Top levels are the vertical limits of the chart. The Levels are depths 
option controls the vertical orientation – select this if your levels increase downwards in the section 
or core. 

Panel settings 

These are the settings affecting each panel. The Width is the width of the panel in pixels. Level sets 
the column containing the vertical levels for each data point. Data start and Data end set the range 
of columns for the data in this panel. Often, each panel will show only one data series, and then Data 
start and Data end should be identical. 

Type sets the plot type (Line, Dots, Line+dots, Silhouette, Bars, Stacked, Spindle, Zones, Lithology). 

The spindle diagram is used for fossil occurrences (abundances or presence-absence). 
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The Zones plot displays a stratigraphic succession of intervals such as biozones, periods or stages (see 
the leftmost panel in the example above). The levels represent the basal levels of each interval. An 
extra data point is required for the top of the last interval. The data should be a single column of type 
‘String’, with the names of the intervals. Chronostratigraphic units such as ‘Precambrian’, 
‘Ordovician’, ‘Upper Ordovician’, ‘Pliensbachian’ are recognized by the program and will be plotted 
using the colors specified by the International Commission on Stratigraphy. 

The Lithology plot displays a column with lithology patterns. Levels are given as for the Zones plot 
(above). The data should consist of a column of type ‘String’, containing lithology codes (not case 
sensitive). A second data column may be given with a width in percent (0-100). 

Sst Sandstone 

Cst Coarse sandstone 

Cgl Conglomerate 

Slt Siltstone 

Sha Shale 

Lst Limestone 

Sls Silty limestone 

Ign Igneous rock 

Mis Missing/covered (cross) 
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Radiocarbon calibration 

This module expects one or more rows of radiocarbon dates, with two columns for uncalibrated age 
(BP 1950) and its laboratory-reported standard error (one-sigma). Two calibration curves are 
included, IntCal20 (Reimer et al. 2020) for atmospheric (terrestrial) samples and MarineCal20 
(Heaton et al. 2020) for marine samples. Please include a reference to Reimer et al. (2020) or Heaton 
et al. (2020) when reporting calibration results (as well as Past of course!). 

For the marine calibration, a globally averaged reservoir age (around 400 years, but varying with 
time) is included in the calibration. However, a local reservoir age correction (delta R) and its one-
sigma error should be entered. These values can be looked up e.g. in the Marine Reservoir Correction 
Database at http://calib.org/marine/ 

The IntCal20 curve is inaccurate in the Southern Hemisphere. The Southern Hemisphere calibration 
curve (SHCal20) will be included in a future version. 

The output ages can be reported in cal BP 1950 (years before 1950), BP 2000, or CE (Common Era). 
The CE values are reported with negative or positive sign, and with a year zero included (ISO 8601). 

Plotted probability curves are normalized to a peak value of 1. 

Calibrated ages should always be reported with confidence intervals (and ideally the complete 
probability curve), but the median and mode (age of peak probability) are also given by Past as 
convenient short-hands. The median is more commonly used, but Michczyński (2007) found the 
mode to perform better in simulation studies. 

 



290 

 

 

 

Confidence intervals 

For consistency with other modules in Past, the confidence intervals on calibrated ages are given 
with respect to the 95% range, not 95.4% as in some other calibration software. This can give slightly 
shorter confidence intervals in Past. 

The “Percentile” option calculates a single confidence interval from the 2.5 to the 97.5 percentile 
points. The “Level set” option calculates a probability threshold such that the sum of all probabilities 
larger than the threshold is 0.95. All the corresponding t values are included in the CI. Because the 
probability curve can be multimodal, this can give rise to several disjoint segments in the CI. Past 
reports the three of these segments containing the largest areas (reported in %), which is usually 
sufficient to reach 95%. 

Both these options produce valid 95% confidence intervals. The “Level set” option gives a more 
detailed view, and is used in most other calibration software, but the “Percentile” option is more 
convenient and gives a sufficiently informative CI for most purposes (personal opinion!). If only a 
single segment is sufficient for the level set CI, this will normally be very similar to the percentile CI. 

The confidence interval is shown as red lines in the plot. 

 

Computational details 

The pointwise calculation of the probability curve p(t) as a function of calibrated time follows 
Equation (2) in Bronk Ramsey (2001): 

𝑝(𝑡) =
exp [−0.5(𝑟𝑚 − 𝑟(𝑡))

2
(𝜎𝑚

2 + 𝜎2(𝑡))⁄ ]

√𝜎𝑚
2 + 𝜎2(𝑡)

 

where the calibration curve is r(t) with standard error σ(t), and the given radiocarbon date is rm±σm. 
This equation is evaluated with a time step of 1 year. 
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Values for r(t) and σ(t) are linearly interpolated from the tables, which is reasonably accurate given 
the fine spacing of the IntCal20 and MarineCal20 curves. 

The given error in delta R is included in σm (added in quadrature) before calculation of p(t). 
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Scripting 

Past includes a fairly rich scripting language, which allows you to program your own modules taking 
advantage of the Past user interface, graphics package and mathematical and statistical routines. The 
scripter is already fully functional, but it will be substantially extended in future versions. 

 

Language structure 

Scripts are written in Pascal-style syntax. The fundamental language elements are: 

begin .. end constructor 
procedure and function declarations 
if .. then .. else constructor 
for .. to .. do .. step constructor 
while .. do constructor 
repeat .. until constructor 
try .. except and try .. finally blocks 
case statements 
array constructors (x:=[ 1, 2, 3 ];) 
^ , * , / , and , + , - , or , <> , >=, <= , = , > , < , div , mod , xor , shl , shr operators 
access to object properties and methods (ObjectName.SubObject.Property) 

Script structure 

A script is made of two major blocks: a) procedure and function declarations and b) main block. Both 
are optional, but at least one should be present. There is no need for the main block to be inside 
begin..end. It could be a single statement. Some examples: 

SCRIPT 1: 

procedure DoSomething; 

begin 

  CallSomethingElse; 

end; 

 

begin 

  DoSomething; 

end; 

SCRIPT 2: 

begin 

  CallSomethingElse; 

end; 
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SCRIPT 3: 

function MyFunction; 

begin 

  result:=’Ok!’; 

end; 

SCRIPT 4: 

CallSomethingElse; 

 

Statements should be terminated by the “;” character. Begin..end blocks are used to group 
statements. 

 

Identifiers 

Identifier names in script (variable names, function and procedure names, etc.) should begin with a 
character (a..z or A..Z), or ‘_’, and can be followed by alphanumeric chars or the ‘_’ char. They cannot 
contain any other characters or spaces. 

Valid identifiers: 

VarName 
_Some 
V1A2 
_____Some____ 

 

Invalid identifiers: 

2Var 
My Name 
Some-more 
This,is,not,valid 

 

Assign statements 

Assign statements (assigning a value or expression result to a variable or object property) are built 
using “:=”. Examples: 

MyVar := 2; 

Button.Caption := ‘This ‘ + ‘is ok.’; 
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Character strings 

Strings (sequence of characters) are declared using single quote (‘) characters. Double quotes (“) are 
not used. You can also use #nn to declare a character inside a string. There is no need to use the ‘+’ 
operator to add a character to a string. Some examples: 

A := ‘This is a text’; 

Str := ‘Text ‘+’concat’; 

B := ‘String with CR and LF char at the end’#13#10; 

C := ‘String with ‘#33#34’ characters in the middle’; 

 

Comments 

Comments are defined by // chars or (* *) or { } blocks. With the // char, the comment will finish at 
the end of line. 

//This is a comment before ShowMessage 

ShowMessage(‘Ok’); 

(* This is another comment *) 

ShowMessage(‘More ok!’); 

 

{ And this is a comment 

with two lines } 

 

ShowMessage(‘End of okays’); 

 

Variables 

There is no need to declare variable types. Thus, you declare a variable just using the var directive 
and its name. Also, it is optional to declare variables at all. Variables and their types are implicitly 
declared at first usage. Examples: 

SCRIPT 1: 

procedure Msg; 

var S; 

begin 

  S:=’Hello world!’; 

  ShowMessage(S); 

end; 

SCRIPT 2: 

var A; 

begin 



295 

 

  A:=0; 

  A:=A+1; 

end; 

SCRIPT 3: 

var S: string; 

begin 

  S:=’Hello World!’; 

  ShowMessage(S); 

end; 

Var declarations are not strictly necessary in any of scripts above. 

 

Indexing 

Strings, arrays and array properties can be indexed using “[” and “]” chars. For example, if Str is a 
string variable, the expression Str[3] returns the third character in the string denoted by Str, while 
Str[I + 1] returns the character immediately after the one indexed by I. More examples: 

MyChar:=MyStr[2]; 

MyStr[1]:=’A’; 

MyArray[1,2]:=1530; 

Lines.Strings[2]:=’Some text’; 

 

Arrays 

To construct an array, use “[” and “]” chars. You can construct multi-index arrays, nesting array 
constructors. You can then access arrays using indexes. A variable is an array if it was assigned using 
an array constructor or if it was created using the array or vector procedures. Some examples: 

NewArray := [ 2,4,6,8 ]; 

Num:=NewArray[1]; //Num receives “4” 

MultiArray := [[’green’,’red’,’blue’] , [’apple’,’orange’,’lemon’]]; 

Str:=MultiArray[0,2]; //Str receives ‘blue’ 

MultiArray[1,1]:=’new orange’; 

V:=vector(100); 

A:=array(100,100); 

Arrays defined using the array constructors can contain elements of any type, but arrays defined by 
the vector and array procedures are of type Double. 
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Arrays constructed using the array constructors are indexed from 0. Also, arrays defined using the 
vector and array procedures are indexed from 0, but the 0 element is often not used and these 
arrays contain n+1 elements, indexed from 0 to n. 

 

If statements 

There are two forms of if statement: if...then and if...then...else. If the if expression is true, the 
statement (or block) is executed. If there is an else part and the expression is false, the statement (or 
block) after else is executed. Examples: 

if J <> 0 then Result := I/J; 

if J = 0 then Exit else Result := I/J; 

if J <> 0 then 

begin 

  Result := I/J; 

  Count := Count + 1; 

end else 

  Done := True; 

 

while statements 

A while statement is used to repeat a statement or a block, while a control condition (expression) is 
evaluated as true. The control condition is evaluated before the statement. Hence, if the control 
condition is false at first iteration, the statement sequence is never executed. The while statement 
executes its constituent statement (or block) repeatedly, testing the expression before each 
iteration. As long as expression returns True, execution continues. Examples: 

while Data[I] <> X do I := I + 1; 

 

while I > 0 do 

begin 

  if Odd(I) then Z := Z * X; 

  I := I div 2; 

  X := Sqr(X); 

end; 

 

while not Eof(InputFile) do 

begin 

  Readln(InputFile, Line); 

  Process(Line); 

end; 
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repeat statements 

The syntax of a repeat statement is 

repeat statement_1; ...; statement_n; until expression 

where expression returns a Boolean value. The repeat statement executes its sequence of 
constituent statements continually, testing the expression after each iteration. When expression 
returns True, the repeat statement terminates. The sequence is always executed at least once 
because expression is not evaluated until after the first iteration. Examples: 

repeat 

  K := I mod J; 

  I := J; 

  J := K; 

until J = 0; 

 

repeat 

  Write(‘Enter a value (0..9): ‘); 

  Readln(I); 

until (I >= 0) and (I <= 9); 

 

for statements 

For statements have the following syntax: 

for counter := initialValue to finalValue do statement 

The For statement sets counter to initialValue, repeats execution of the statement (or block) and 
increments the value of counter until counter reaches finalValue. Examples: 

SCRIPT 1: 

for c:=1 to 10 do 

  a:=a+c; 

SCRIPT 2: 

for i:=a to b do 

begin 

  j:=i^2; 

  sum:=sum+j; 

end; 

 

case statements 

Case statements have the following syntax: 
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case selectorExpression of 

  caseexpr1: statement1; 

  ... 

  caseexprn: statementn; 

else 

  elsestatement; 

end 

If selectorExpression matches the result of one of caseexprn expressions, the respective statement 
(or block) will be executed. Otherwise, elsestatement will be executed.The Else part of the case 
statement is optional. A Case statement doesn’t need to use only ordinal values. You can use 
expressions of any type in both the selector expression and the case expression. Example: 

case uppercase(Fruit) of 

  ‘lime’: ShowMessage(‘green’); 

  ‘orange’: ShowMessage(‘orange’); 

  ‘apple’: ShowMessage(‘red’); 

else 

  ShowMessage(‘black’); 

end; 

 

function and procedure declaration 

Declaration of functions and procedures are similar to Pascal, with the difference that you don’t 
specify variable types. To return function values, use the implicitly declared result variable.  

Parameters by reference can also be used, with the restriction mentioned: no need to specify 
variable types. Some examples: 

procedure HelloWord; 

begin 

  ShowMessage(‘Hello world!’); 

end; 

 

procedure UpcaseMessage(Msg); 

begin 

  ShowMessage(Uppercase(Msg)); 

end; 

 

function TodayAsString; 

begin 

  result:=DateToStr(Date); 

end; 

 

function Max(A,B); 

begin 

  if A>B then 

    result:=A 

  else 

    result:=B; 

end; 
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procedure SwapValues(var A, B); 

Var Temp; 

begin 

  Temp:=A; 

  A:=B; 

  B:=Temp; 

end; 

 

The output window 

When you run a script, an output window will be opened automatically. It contains three tabs: Text, 
graphic and table. 

The text tab 

The text tab contains a window to which the script can write output. The text can be copy-pasted to 
other programs by the user. The following procedures are available: 

cleartext Clears the text window 

textout(s) Writes a line to the text window. Handles numerical, string, vector and array types. 

The graphic tab 

A resizable graphic canvas with the usual Past functionality such as a graph preferences window with 
export to vector (SVG or PDF) or bitmap formats. The window will automatically scale to its contents, 
so you do not need to consider the scale of coordinates. For efficiency, no graphics will appear until 
the redraw procedure is called. 

Colors must be given as one of the following constants: black, red, blue, green, purple, yellow, gray, 
brown. 

redraw     Redraw the graphic window with automatic axis ranges 

setaxes(x1, x2, y1, y2)   Redraw the graphic with the given axis ranges 

cleargraphic    Clears the graphic window 

savegraphic(filename) Depending on the file extension, will save the graphic in one 
of the following formats: svg, pdf, jpg, tif, gif, png, bmp 

drawpoints(x, y, color) Draws one point (if x and y are single numbers) or several (if x 
and y are vectors). Color is a single integer (see above). 

drawsymbols(x, y, color, symbol) Draws one symbol (if x and y are single numbers) or several 
(if x and y are vectors). Color and symbol are single integers, 
see ‘spreadsheet_symbols’ for symbol coding. 
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drawline(x1, y1, x2, y2, color)  A line from (x1, y1) to (x2, y2) 

drawpolyline(x, y, color)  A polyline with lists of x and y coordinates in vectors x and y 

drawrectangle(x1, y1, x2, y2, color) A rectangle with the given corners 

drawellipse(x, y, major, minor, angle, color) 

An ellipse with center (x, y), given major and minor axes and 
with the major axis at the given angle (radians) to the x axis. 

drawtext(x, y, string)  Draws text at position (x, y) – may reposition to reduce 
 overlap 

drawmatrix(A, interpolate) Draws the matrix A. Set interpolate to false or true to select 
drawing mode. Does an automatic redraw. 

drawhistogram(V, nbins, color, kde) A histogram of vector V, with the given number of bins. If 
kde=true, a kernel density estimate is also drawn. 

drawbars(V, color)   A bar chart of vector V. 

drawboxplot(V, x, outliers) A box plot of vector V at the given x position. Outliers is true 
or false. 

drawconvexhull(Vx, Vy, color)  The convex hull of the points in vectors Vx and Vy. 

drawrose(V, n, equalarea, kde) A rose plot of angles in V (degrees), with n bins. Equalarea 
and kde (kernel density estimate) are true or false. 

The table tab 

A table (spreadsheet) window with copy-paste function. 

tablesize(rows, columns: integer) Set the number of rows and columns in the table 

tableout(row, col, value) Write value to a particular cell in the table, indexing starting 
at 0.  
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Accessing the main Past spreadsheet and menus 

clickmenu(name: string) Executes an item in the Past menu. Specify the name as given in the 
menu, e.g. clickmenu(‘save as’). Parts of the name in brackets are not 
included: Use ‘species packing’, not ‘species packing (Gaussian)’. 

spreadsheet_array Returns an array containing the selected area in the Past 
spreadsheet. Group columns are not included 

spreadsheet_column(n: integer) Returns a vector with the numbers in column n in the Past 
spreadsheet. 

spreadsheet_groups(n: integer) Returns a vector with group numbers corresponding to the 
rows in spreadsheet. For n=1, the first group column is 
returned, for n=2 the second group column (if any), etc. 

spreadsheet_rowlabels  Returns a string vector with the row labels in the selected area. 

spreadsheet_columnlabels Returns a string vector with the column labels in the selected area. 

spreadsheet_symbols Returns a vector with numbers (0-15) identifying the symbols 
corresponding to the rows in spreadsheetarray. 0=dot, 1=+, 
2=square, 3=X, 4=triangle, 5=O, 6=diamond, 7=-, 8=l, 9=fillsquare, 
10=*, 11=oval, 12=filltriangle 13=invtriangle, 14=fillinvtriangle, 
15=filldiamond 

spreadsheet_set(row, col, s) Sets the contents of the cell at (row, col) in the Past spreadsheet to s 
(number or string). Indexing starts from 0 (label cells). 
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Array and vector operations 
array(m, n: integer) Allocates and returns a Float (Double) array with m rows and n columns, 

indexing starting at 1. 
vector(n: integer) Allocates and returns a vector (one-dimensional array) with n elements, 

indexing starting at 1 
column(A, n) Returns column n in array A, as a vector 
row(A, m) Return row n in array A, as a vector 
ncols(A) Returns the number of columns in array A 
nrows(A) Returns the number of rows in array A 
inv(A)  Inverse of square matrix A 
arrmult(A, B) Returns array multiplication A*B 
mean(V) Mean of vector V 
variance(V) Variance of vector V 
median(V) Median of vector V 
skew(V) Skew of vector V 
kurtosis(V) Kurtosis of vector V 
svd(A) Singular Value Decomposition of A, returning V augmented by an extra column 

containing D. 
cov(A)  Returns variance-covariance matrix of A. 
eig(A)  Returns the eigenvectors of A, augmented by an extra column with the eigenvalues. 
pearsonr(X, Y) Returns the Pearson correlation (r) between vectors X and Y 
spearmanrs(X, Y) Returns the Spearman rank-order correlation (rs) between vectors X and Y 
linfit(X, Y) Ordinary least-squares regression of vectors X, Y. Returns a 4-vector with slope, 

intercept, standard error of slope, standard error of intercept. 

Some common mathematical functions are available for arrays and vectors, for efficiency. The 
function is applied to each element of the array or vector, returning an array or vector. 

arrAbs(A) Absolute value 
arrCos(A) Cosine (radians) 
arrExp(A) ex 
arrLn(A) Natural logarithm (base e) 
arrSin(A) Sine (radians) 
arrSqrt(A) Square root 
arrTan(A) Tangent (radians) 
 

Scalar math functions 
abs(x)  Absolute value 
arctan(x) Inverse tangent (radians) 
arctan2(y, x) Inverse tangent of y/x extended to correct quadrant. 
cos(x)  Cosine (radians) 
cumulnorm(x, s) Cumulative normal distribution function, mean=0, stdev=s 
exp(x)  ex 
frac(x)  Fractional part of x 
fresnel(x) Returns a 2-vector with the S and C Fresnel integrals to x. 
ln(x)  Natural logarithm (base e) 
normal(m, s) Normally distributed random number, mean=m, stdev=s. 
gamma(k) Gamma distributed random number, shape=k, scale=1. 
invnorm(x) Inverse of the cumulative normal distribution, mean=0, stdev=1, 0<x<1 
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invchi2(x, df) Inverse of the cumulative chi-squared distribution with df degrees of freedom 
odd(x)  True if x is odd 
random  Random number, uniform distribution, 0 <= x < 1 
round(x) Rounds to the nearest integer 
sin(x)  Sine (radians) 
sqr(x)  Square (x*x) 
sqrt(x)  Square root 
studentp(t, df) Two-tailed p value from Student’s t distribution with df degrees of freedom 
tan(x)  Tangent (radians) 
trunc(x)  Rounds down 

 

File I/O 

function Append(var F: File): Integer; 

Prepares an existing file for adding text to its end. F is a text file variable and must be 
associated with an external file, using AssignFile. If the external file does not exist, an error 
occurs. If F is already open, it is closed, then reopened. The current file position is set at the 
end of the file. 

function AssignFile(var F: File; FileName: String): Integer; 

Associates the name of an external file with a file variable. After calling AssignFile, F is 
associated with the external file until F is closed. All further operations on the file variable F 
operate on the external file named by FileName. 

procedure ChDir(S: string); 

Changes the current directory to the path specified by S. 

procedure CloseFile(var F: File); 

Terminates the association between a file variable and an external disk file. F is a file variable 
opened using Reset, Rewrite, or Append. The external file associated with F is completely 
updated and then closed, freeing the file handle for reuse. 

function Eof(var F: File): Boolean; 

Tests whether the file position is at the end of a file. 

function FilePos(var F: File): Integer; 

Use on an open file to determine the current position. If the current position is at the 
beginning, FilePos returns 0. Otherwise, FilePos returns the byte offset from the beginning of 
the file. 

function FileSize(var F: File): Integer; 
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Returns the number of records in a file. 

function ReadLn(var F: File): String; 

Reads a line of text and then skips to the next line of the file. 

procedure Reset(var F: File); 

Opens the existing external file with the name assigned to F. An error results if no existing 
external file of the given name exists or if the file cannot be opened. If F is already open, it is 
first closed and then reopened. The current file position is set to the beginning of the file. 

procedure Rewrite(var F: File); 

Creates a new external file with the name assigned to F. F is associated with an external file 
using AssignFile. If a file with the same name already exists, it is deleted and a new empty file 
is created in its place. If F is already open, it is first closed and then re-created. The current 
file position is set to the beginning of the empty file. 

procedure WriteLn(var F: File; S: string); 

Writes to a text file and adds an end-of-line marker. 

 

String operations 

function Chr(X: Byte): Char; 

Returns the character for a specified ASCII value.  

function CompareStr(S1, S2: string): Integer; 

Compares S1 to S2, with case sensitivity. The return value is less than 0 if S1 is less than S2, 0 
if S1 equals S2, or greater than 0 if S1 is greater than S2. 

function CompareText(S1, S2: string): Integer; 

Compares S1 to S2, without case sensitivity. The return value is less than 0 if S1 is less than 
S2, 0 if S1 equals S2, or greater than 0 if S1 is greater than S2. 

function Copy(S: string; Index: Integer; Count: Integer): string; 

Returns a substring of a string S. Index and Count are integer-type expressions. Copy returns 
a substring or subarray containing Count characters or elements starting at S[Index]. 

function FloatToStr(Value: Double): string; 

Converts the floating-point value given by Value to its string representation. The conversion 
uses general number format with 15 significant digits. 
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procedure Insert(Source: string; var Dest: string; Index: Integer); 

Inserts a substring into a string, from a specified position. If Index is less than 1, it is set to 1. 
If it is past the end of Dest, it is set to the length of Dest, turning the operation into an 
append. 

function IntToStr(Value: Integer): string; 

Converts an integer to a string that contains its decimal representation. 

function Length(S: string): Integer; 

Returns the number of characters in a string. 

function LowerCase(S: string): string; 

Returns a string with the same text as in S, but with all letters converted to lowercase. 

function Pos(SubStr, Str: string): Integer; 

Returns an index of the first occurrence of Substr in Str. Returns zero if Substr is not found. 

function StrToFloat(S: string): Double; 

Converts a string to a floating-point value (leading and trailing blanks are ignored). 

function StrToInt(S: string): Integer; 

Converts a string that represents an integer into a number. 

function StrToIntDef(S: string; Default: Integer): Integer; 

Converts the string S, which represents an integer, into a number. If S does not represent a 
valid number, StrToIntDef returns Default. 

function Trim(S: string): string; 

Trims leading and trailing spaces and control characters from a string. 

function TrimRight(S: string): string; 

Trims trailing spaces and control characters from a string. 

function UpperCase(S: string): string; 

Returns a copy of a string in uppercase. 
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Other functions 

procedure ShowMessage(S: string); 

Shows a message box and waits for user to click Ok. 

function InputQuery(Caption, Prompt: string; var Value: string): 

Boolean; 

Displays an input dialog box that lets the user enter a value. Caption is the caption of the 
dialog box. Prompt is the text that prompts the user to enter input. Value is the value that 
appears in the edit box when the dialog first appears and returns the value that the user 
enters. InputQuery returns true if the user chooses OK, false if the user chooses Cancel or 
presses Esc. 

procedure sleep(ms: integer); 

Suspends the execution of the script for the given number of milliseconds. 
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Calling dll functions (Windows only) 

Past allows importing and calling external DLL functions, by declaration of script routines, indicating 
library name and, optionally, the calling convention, in addition to the function signature. External 
libraries are loaded by Past on demand, before function calls, if not already loaded (dynamically or 
statically). To load and unload libraries explicitly, functions LoadLibrary and FreeLibrary from unit 
Windows can be used. 

Syntax 

function functionName(arguments): resultType; [callingConvention]; 

external ‘libName.dll’ [name ExternalFunctionName]; 

For example, the following declaration: 

function MyFunction(arg: integer): integer; 

external ‘CustomLib.dll’; 

imports a function called MyFunction from CustomLib.dll. Default calling convention, if not 

specified, is register. Past also allows declaring a different calling convention (stdcall, register, pascal, 
cdecl or safecall) and to use a different name for the DLL function, like the following declaration: 

function MessageBox(hwnd: pointer; text, caption: string; msgtype: 

integer): integer; stdcall; 

external ‘User32.dll’ name ‘MessageBoxA’; 

that imports ‘MessageBoxA’ function from User32.dll (Windows API library), named ‘MessageBox’ to 
be used in the script. 

The declaration above can be used for functions and procedures (routines without result value). 

Supported types 

Past supports the following basic data types on arguments and result of external functions: 

Integer 
Boolean 
Char 
Extended 
String 
Pointer 
PChar 
Object 
Class 
WideChar 
PWideChar 
AnsiString 
Currency 
Variant 
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Interface 
WideString 
Longint 
Cardinal 
Longword 
Single 
Byte 
Shortint 
Word 
Smallint 
Double 
Real 
DateTime 
TObject descendants (class must be registered in scripter with DefineClass) 

Other types (records, arrays, etc.) are not supported yet. Arguments of above types can be passed by 
reference, by adding var in the param declaration of the function. 

 

Libraries and classes 
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Forms and components 

For user input more complex than provided by the InputQuery function (see above), you can build 
your own forms (windows) with the following components: Labels, edits (where the user can enter 
text and numbers), buttons and check boxes. 

Form 

A form is defined with a variable of type TForm, and created using “TForm.CreateNew(nil, 0)”. Some 
useful properties of the TForm class are: 

Caption  The text at the top of the form 
Width  Width in pixels 
Height  Height in pixels 

The method showModal displays the form, returning mrOk or mrCancel depending on buttons 
clicked in the form (see Button below). 

Label 

A label, of type TLabel, created with Tlabel.create(parentform) shows a simple text. Properties of the 
TLabel class include 

Parent  The parent form, must be specified here in addition to in TLabel.create 
Text  The text of the caption 
Position.x x position, in pixels, relative to the parent form 
Position.y y position, in pixels 
Width  Width in pixels 

Edit 

A box, of type TEdit, created with TEdit.create(parentform), where the user can enter text or 
numbers. Properties of the TEdit class include 

Parent  The parent form, must be specified here in addition to in TEdit.create 
Text  The text of the caption 
Position.x x position, in pixels, relative to the parent form 
Position.y y position, in pixels 
Width  Width in pixels 

Button 

A button, of type TButton, created with TButton.create(parentform). Properties of the TButton class 
include 

Parent  The parent form, must be specified here in addition to in TButton.create 
Text  The text of the caption 
Position.x x position, in pixels, relative to the parent form 
Position.y y position, in pixels 
Width  Width in pixels 
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Height  Height in pixels 
modalResult Can be set to mrOk or mrCancel. When the button is clicked, this value is returned by 

the form’s showModal method. 

Check box 

A check box, of type TCheckBox, created with TCheckBox.create(parentform). Properties of the 
TCheckBox class include 

Parent  The parent form, must be specified here in addition to in TCheckBox.create 
Text  The text of the caption 
Position.x x position, in pixels, relative to the parent form 
Position.y y position, in pixels 
Width  Width in pixels 
isChecked Boolean (True or False). Read only, don’t set to True from code, it won’t work 

Example 

The following script shows a form with a label, an edit control and an OK button. When the user 
clicks the button, the text of the edit control is written to the text window. 

var 

  fm: TForm; 

  lb: TLabel; 

  ed: TEdit; 

  bt: TButton; 

 

begin 

  fm : = TForm.CreateNew(nil, 0); 

  fm.Caption := ‘A brand new form!’; 

  fm.Width := 300; 

  fm.Height := 150; 

 

  lb := TLabel.Create(fm); 

  lb.Parent := fm; 

  lb.Position.X := 10; 

  lb.Position.Y := 10; 

  lb.Text := ‘Your name:’; 

 

  ed := TEdit.Create(fm); 

  ed.Parent := fm; 

  ed.Position.X := lb.Position.X; 

  ed.Position.Y := lb.Position.Y + lb.Height + 10; 

 

  bt := TButton.Create(fm); 

  bt.Parent := fm; 

  bt.Position.X := ed.Position.X; 

  bt.Position.Y := ed.Position.Y + ed.Height + 10; 

  bt.Text := ‘Ok’;  

  bt.Default := True; 

  bt.ModalResult := mrOk; 

 

  fm.ActiveControl := ed; // Sets the focus to the edit control 
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  if fm.ShowModal = mrOk then  

    textout(‘Hello ‘+ed.Text+’!’); 

  fm.Free; 

end; 

 


