

Advanced Trigonometry Calculator

User Guide

All these application information contents were created and developed by Renato Alexandre dos Santos Freitas since March 19 ${ }^{\text {th }}$, 2011, when this project was born.

Contents

Overview 6
Enabled functions 7
Trigonometry 7
Hyperbolic 7
Digital signal processing 7
Logarithm 7
Arithmetic 9
Statistics 10
Matrices 10
Commands 12
Handling App environment 12
Handling Calculations 15
Handling App folders 18
Handling Time 18
Handling PC 19
Sorting 20
Features 21
Handling features 21
History 21
Processing of text files (.txt) 22
User configurations 23
Reuse of entered expressions 24
Use of the space key 24
Introduction of multiple expressions 24
Creating abbreviations for paths 24
Txt detector 25
Solving txt files automatically 25
Run ATC from Windows command-line 27
Run ATC over Windows command-line 29
Current settings 29
Opentxt 30
Autocomplete 30
Scripting features 30

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

print, get, and sprint 30
Compose commands 32
while and for 33
if and else 35
Switch case and cls() 36
Break 37
Return 37
Replace 38
Replace By Index 39
Count Occurrences 39
Delete X Occurrences 40
Is Contained 41
Calc 41
Is Equal 42
Get Positive Value 43
Is To Write 43
Is Variable 44
Is Contained Variable 45
Is Contained By Index 47
Strlen 48
Calculation features 49
Calculations mode 49
SI prefixes 49
Numerical Systems 51
Equations systems solver 52
Variables 53
Use of previous results 53
Numerical systems places 54
Verification of entered data 55
Parentheses 55
Constants and answer 55
Arithmetic operations 56
Deduction of multiplications 56
User functions 57
Quadratic equations solver 60
Verbose resolution 61
Function domain error 61
Solver. 61
Definite Integral 62
Equation Solver 62
Graph with table view 64
Triangles Rectangles Solver 66
Arithmetic Matrix Solver 66
Calculation of Determinant 67
Roots to Polynomial 67
If command 68
Financial Calculations 70
Statistics Calculations 71
Geometry Calculations 72
Physics Calculations 72
Unit Conversions 73
Microeconomics Calculations 74
Polynomial Simplifier 74
Function Study. 76
Reduction to the same denominator 78
FFT and IFFT 79
ATC as Arithmetic Matrix Calculator 79
Higher precision to improve precision 88
Time features 89
Calendar 89
Stopwatch. 89
Timer 90
Big timer 91
Date adjustment. 91
Clock 91
Big clock 92
Time Difference Calculations 93
Sorting 94
Ascending order 94
Descending order 94
ASCII order 94
Inverse ASCII order 95
Download and contact 96
Developer 97

Overview

Advanced Trigonometry Calculator is a rock-solid calculator, allowing you perform advanced complex math calculations.

Enter your complex math expression on its integrity and in the final press "Enter" button, after some instants the solution for your expression will be displayed.

Anyone can use this calculator since the syntax used is very similar with scientific handheld calculators, e.g., TI 84-Plus.

Enabled functions

Trigonometry

$\cos (), \operatorname{acos}(), \sin (), \operatorname{asin}(), \tan (), \operatorname{atan}(), \sec (), \operatorname{asec}(), \operatorname{cosec}(), \operatorname{acosec}(), \operatorname{cotan}(), \operatorname{acotan}()$

This calculator can perform trigonometric calculations with complex numbers as arguments.

Hyperbolic

$\cosh (), \operatorname{acosh}(), \sinh (), \operatorname{asinh}(), \tanh (), \operatorname{atanh}(), \operatorname{sech}(), \operatorname{asech}(), \operatorname{cosech}(), \operatorname{acosech}(), \operatorname{cotanh}()$, acotanh()

This calculator can perform hyperbolic calculations with complex numbers as arguments.

Digital signal processing

sinc() (normalized sinc function)

This function can perform calculations with complex numbers as argument.

Logarithm

$\log (), \ln (), \log b()$

You can use all logarithm bases that you want with the simple function "logb $b()$ ". Just replace the space on "b b" by your base " $2,4,8$, etc." You can also use complex numbers as logarithm base.

You can put between "b b" simple arithmetic calculations but please don't put functions. Example: "logb(2+B10+O2+H2+sumo)b((2+B10+O2+H2+sumo) $\left.)^{\wedge} \operatorname{cosec}(30)\right)^{\prime \prime}$

```
>sumo=2
#D=2
logb(2+B10+02+H2+sumo )b}\langle(2+B10+02+H2+sumo )^\operatorname{cosec}\langle30)
#1=2
```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Example of complex numbers applying to logarithm functions:

```
>log<12+12i)
#0=1.2297+0.341094i
>10^#0
#1=12+12i
>nn}\langle3-6i
#2=1.90333-1.10715i
>e^#2
#3=3-6i
>logb2-10ib(<2-10i)^2)
#4=2
```


Arithmetic

```
rest, quotient, rtD D(), sqrt(), cbrt(), afact(), abs() and operators "+, -, *, /, ^, !"
<(100i)rest(3i)
#0=1i
<100i>quotient<3i>
$1=33
rtD2+2iD<3^(2+2i)>
$2=3
>sqrt(_1)
$3=1i
cbre(2+3i)
#4=1.45186+0.493404i
>^3
45=2+3i
>(2+7i)/(_3-4i)
#6=-1.36-0}.52
```

You can use these functions to make advanced calculations. For rest and quotient functions you just need enter: dividend, function and divider, e.g. "100rest(3)=1" or "100quotient(3)=33".

With "rtD $D()^{\prime}$ " function you can use all root degrees that you want. Just replace the space in the function part "D D" by your degree " $2,3,4$, etc". For the remaining functions: sqrt() is equivalent to $\mathrm{rtD2D}()$ and $\operatorname{cbrt}()$ is equivalent to $r t D 3 D()$.

You can put between "D D" simple arithmetic calculations but please don't put functions. Example: "rtD $(2+\mathrm{B} 10+\mathrm{O} 2+\mathrm{H} 2+$ sumo-pi+e) D(sec(60)^(2+B10+O2+H2+sumo-pi+e))"

```
>sumo=2
#!=2
logb(2+B10+02+H2+sumo-pi+e)b(<(2+B10+02+H2+sumo-pi+e)^sec(60))
#1=2
>vtD<2+B10+02+H2+sumo-pi+e)D}(\operatorname{sec}\langle6|\mp@subsup{)}{}{\wedge}\langle2+B10+02+H2+sumo-pi+e)
#2=2
```

"afact()" is the inverse function of factorial operator "!", e.g. "4!=24" so "afact(24)=4".

The operators: addition, subtraction, multiplication, division, exponential, and factorial.

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

The negative character used is ' ${ }^{\prime}$, so to enter " -5 " value, you need to enter " 5 ".
e, pi, -INF and INF are mathematical values that user can make use to perform math calculations.

Statistics

gerror(), gerrorinv(), gerrorc(), gerrorcinv(), qfunc(), qfuncinv()
"gerror()" is the error function also called "Gauss error function"; "qfunc()" is the Q-function.
And on the functions above "inv" means inverse.

Matrices

$\operatorname{avg}(), \min (), \max ()$, linsnum(), colsnum(), getlins(), getcols()

```
var=1\2\3\4
1+0i}\quad2+0: 3+0: 4+0
>min(var)
#1=1
max(var)
#2=4
linsnum(var)
#3=1
colsnum(var)
#4=4
>getcols(var\2\3)
3+0}i\quad4+0
7getlins(#5\0v0)
3+0i 4+0i
>getcols(#5\0\0)
#7=3
>matrix
#8=
0+0i 15+0i 30+0i 45+0i
lll
loll
```

```
>valores=0\30\45\60\90
```

>valores=0\30\45\60\90
0+0}i\quad30+0i 45+0i 60+0i 90+0i
0+0}i\quad30+0i 45+0i 60+0i 90+0i
>sin(valores)
>sin(valores)
\#1=
\#1=
0+\emptyseti
0+\emptyseti
>cos(valores)
>cos(valores)
\#2=
\#2=
1+\square\mp@code{i}
1+\square\mp@code{i}
>tan(valores)
>tan(valores)
\partial+\emptyseti 0.57735+0i 1+\emptyseti 1.73205+\emptyseti INF+\emptyseti

```
\partial+\emptyseti 0.57735+0i 1+\emptyseti 1.73205+\emptyseti INF+\emptyseti
```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

```
>valores=1\2\3\4\5
#9 (0, 
>avg(valores)
#10=3
>
```


Commands

Handling App environment

Commands	Action
clean	Let you clean the environment-resolution calculations window, if you enter many expressions with just one execution of this program, you will find it helpful.
exit	Let you exit of application, closing the program.
about	Let you access the file "About execution of application.txt" that is inside the application. Avoiding you open this file.
clean history	Let you clean the file "history.txt" with your entered expressions, respective answers and current time.
user guide	Let you open this user guide.
update	Let you download the latest version of the application.
update x64	Let you download the latest x64 version of the application.
update portable	Let you download the latest portable version of the application.
reset all	Let you delete all application ".txt" files, less the files of application info and application license. Application will be as it had finished installation or portable version had finished its unpacking.
reset all now	The same as above but ATC will restart automatically.
reset settings	Let you delete only the files that were created due to configurations in the application made by the user.
reset settings now	The same as above but ATC will restart automatically.
colors	Let you configure the text and background colors.
dimensions	Let you configure the dimensions, i.e., columns and lines numbers of environment-resolution calculations window.
window	Let you configure the position (X-axis, Y-axis), width, and height of application window.
run atc	Let you use the application on multiple execution. When you enter this command, you ask to run the application executable one more time, and you can keep doing it so on.

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

restart atc	Let you close the application and then execute it (restart app).
history	Let you open history file that has your application use history.
predefine txt	Let you predefine a ".txt" file for easily solve it later.
solve txt	Let you solve your predefined ".txt" file or others if you had created abbreviations for paths, e.g., "solvetxt(calculations)"
see abbreviations	Let you see the abbreviations created with their corresponding path.
eliminate abbreviations	Let you eliminate all the abbreviations created until this moment.
enable txt detector	Let you enable again the txt detector feature. Check the section "Features" looking for "Txt detector".
eliminate strings	Let you eliminate all the strings created until this moment.
see strings	Let you see a list with the strings names. You can see the strings accessing "Strings" folder by enter "strings".
auto solve txt	Let your txt file be automatically solver after that in the last of the file be detected the flag "SOLVE_NOW". Check the section "Handling features" looking for "Solving txt files automatically".
atc from cmd	Let you use atc from Windows command-line (cmd.exe). Check the section "Handling features" looking for "Run ATC from Windows command-line".
atc over cmd	Let run atc over cmd, i.e. when you are in cmd and enter this command you will be able to start doing your mathematical tasks in cmd as you were running ATC directly.
donate	Let you be redirected to a Web page where you can donate any monetary value, to help the development of this app.
atc facebook	Let you be redirected to the facebook page of this app.
atc sourceforge	Let you be redirected to the page where this app is originally release. In this page you always find the latest version available for download.
current settings	Let you know the current state of the ATC settings. This way, you will be able to easily configure ATC for your customized use. Check the subsection "Handling features" to find an image illustrating what would be shown to you. Look for "Current settings".
auto adjust window	Let ATC auto adjust the ATC window to the current screen.
disable atc intro	Let you disable ATC intro window. This way you will go directly to the environment-resolution calculations.

enable atc intro	Let you enable ATC intro window. This way you will face intro window again with some info like the command to access this user guide.

Handling Calculations

Commands	Action
mode	Let you choose what calculation mode you want to use in the trigonometric functions for the next expressions that you enter with trigonometric functions, by default is the degree mode until you configure another one.
verbose resolution	Let you enable or disable the feature of verbose resolution. Check "Calculations feature" subsection at the section "Features".
see variables	Let you see the created variables with their values.
renamed variables	Let you see the created variables that have automatic renaming for correct processing.
eliminate variables	Let you eliminate all the created variables until this moment.
numerical systems	Let you enable or disable the functionality of show the answer for an expression entered, in the other three popular numerical systems, i.e.: binary, octal, and hexadecimal.
si prefixes	Let you enable or disable the functionality of show the answer for an expression entered, in the SI prefixes form, e.g., " 1μ ".
see results	Let you see the calculated results with their values.
eliminate results	Let you eliminate all the calculated results until this moment.
solve equations system	Let you solve equations systems. Example of use: "solve equations system($2 \backslash 4 \backslash 9 ; 5 \backslash 6 \backslash 12$)" resulting on the solutions "x1=-0.75" and "x2=2.625". Check the section "Features" looking for "Equations systems solver".
solve quadratic equation	Let you solve quadratic equation. Example of use: "solve quadratic equation($2 \backslash 7 \backslash 12$)" resulting on the solutions " $x 1=-1.75+1.71391 i$ " and "x2=-1.75-1.71391i". Check the section "Features" looking for "Quadratic equations solver".
solve equation	Let you know the zeros of a function (polynomial). E.g., " $x^{\wedge} 3+8 x^{\wedge} 2+x-42$ " $->$ "solve equation(1\8\1\42)" -> x1=-7; x2=2; $x 3=-3$
triangles rectangles solver	Let you discover all the unknows of any triangle rectangle. Angles must be entered in degrees. In the sub-section "Calculation features" you can check a screenshot as example of use of this feature. Look for "Triangles Rectangles Solver".

$\left.\begin{array}{|c|l|}\hline \text { arithmetic matrix } & \begin{array}{l}\text { Let you make various operations: sum/subtraction of matrices, } \\ \text { multiply a matrix by a complex/real number and multiplication of } \\ \text { matrices. }\end{array} \\ \hline \text { In the sub-section "Calculation features" you can check a } \\ \text { screenshot as example of use of this feature. Look for "Arithmetic } \\ \text { Matrix Solver". }\end{array}\right\}$

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

	images as examples in the Calculation features section, looking for "Function Study".
fft	Let you calculate the Fast Fourier Transform. You can find an image as example in the Calculation features section, looking for "FFT and IFFT".
ifft	Let you calculate the Inverse Fast Fourier Transform. You can find a image as example in the Calculation features section, looking for "FFT and IFFT".
higher precision	Let enable ATC to provide values in optimized scientific notation, with at most 15 decimal places.

Handling App folders

Commands	Action
atc folder	Let you open the application folder.
source code	Let you open the source code folder.
to solve	Let you open the folder with the txt files for txt detector feature. Check the section "Features".
scripts examples	Let you open the folder of scripts examples.
user functions	Let you open the folder of user functions.
strings	Let you open the folder with the strings created by the user.

Handling Time

Commands	Action
day of week	Let you check the day of week corresponding to a certain date, e.g. "dayofweek(d11m7y2014)" has as response "Friday".
stopwatch	Let you measure how much time you spend for anything. Entering "stopwatch(3)" let you mark 3 times. To mark times, you just need press the button "Enter". Check the section "Features" looking for "Stopwatch".
run stopwatch	The same as above but will have an independent window from atc for the stopwatch feature. E.g "run stopwatch(3)".
timer	Let you control the time you spend for anything. Entering "timer(0:5:0)" you will be notified when passed 5 minutes since the press of button "Enter". Check the section "Features" looking for "Timer".
run timer	The same as above but will have an independent window from atc for the timer feature. E.g. "run timer(0:5:0)".
Let you control the time you spend for anything. Entering "big	
timer(0:5:0)" you will be notified when passed 5 minutes since the	
press of button "Enter". Check the section "Features" looking for	
"Big timer".	

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

clock	Let you use a clock. Entering "clock(0:5:0)" you will have a clock" during 5 minutes. Check the section "Features" looking for "Clock".
run clock	The same as above but will have an independent window from atc for the clock feature. E.g. "run clock(0:5:0)".
big clock	Let you use a big clock. Entering "big clock(0:5:0)" you will have a clock during 5 minutes. Check the section "Features" looking for "Big clock".
run big clock	The same as above but will have an independent window from atc for the clock feature. E.g. "run big clock(0:5:0)".
time	Let you check the current time for a moment.
calendar	Let you check the current year calendar entering "calendar" or others if entered a year, e.g. "calendar(1991)".
actual time response	Let you enable or disable the functionality of show the current time after having been shown an answer for an expression entered.
time difference	Let you know the difference time between two dates with time.
calculations	Ler

Handling PC

Commands	Action
shutdown	Let you shut down your PC.
shutdown now	Let you shut down your PC immediately.
restart pc	Let you restart your PC.
restart pc now	Let you restart your PC immediately.
hibernate	Let you hibernate your PC. Administrator privileges are required.
log off	Let you log off your PC.
sleep	Let you sleep your PC. Administrator privileges are required.
lock	Let you lock your PC.

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Sorting

Commands	Action
ascending order	Let you put a set of real values in ascending order. Example: Input: ascending order(_1\5\12\14_67\50) Output: -67, -12, -1, 5, 14, 50
descending order	Let you put a set of real values in descending order. Example: Input: descending order($1 \backslash 5 \backslash 12 \backslash 14 \backslash 67 \backslash 50)$ Output: $50,14,5,-1,-12,-67$
ascii order	Let you put a set of real values in ascii order. Check the section of Sorting
inverse ascii order	Let you put a set of real values in inverse ascii order. Check the section of Sorting

Features

Handling features

History

To help you this application creates a text file with the expressions that you have entered, their answers and current time. Its name is "history.txt" you can find it inside the folder that contains the application executable in use. You can also enter "history" and see the file automatically. So, an example:

Processing of text files (.txt)

If you create a ".txt" file with expressions separated by ',' or by paragraphs (by pressing "Enter" button), saving the file. Dragging the icon of the file to the environment-resolution calculations and pressing "Enter" button, the application reads the file expressions and gives to them an answer. Creating a new file with the expressions and their answers. This file has the same name of the original but terminates on "_answers". So, examples:

Original file:

Interaction with application:

```
>"G:\Users\Renato\Desktop\Novo Documento de Texto.txt"
==> Your file was successfully processed! <==
```

New file with answers:

```
Novo Documento de Texto_answers - Bloco de ... - \(\square\) x
Ficheiro Editar Formatar Ver Ajuda
\(>2+2\)
\(=4\)
\(>5+6\)
\(=11\)
\(>^{\wedge} 2\)
=121
```

You can also predefine your ".txt" file and solve it easily, using "predefinetxt" and "solvetxt". Check commands page for details.

User configurations

This application lets you configure the dimensions, the colors, the window, and the mode. If you want reset these configurations:

- Enter "reset all" to put app as it had finished its installation, or it had finished its unpacking.
- Enter "reset settings" to put the configurations by default.

For both commands you need to restart application. You can do it by enter "restart atc".

Reuse of entered expressions

You can use the arrow keys "up" and "down" of keyboard to reuse expressions that you have already entered, you can edit them, and so, get the wanted answer in a rapid and simple way.

Use of the space key

Feel free to use the key of "space" of your keyboard. If you like to use some space when you are entering an expression, stay know that you can do it freely, just on the environment-resolution calculations. So, an example:

```
>2 sin (30) + 3 cos (60)
=2.5
>2 + 8
=10
```

As you notice the use of the space key doesn't affect the correct processing of the expressions.

Introduction of multiple expressions

You can enter multiple expressions by pressing "Enter" button just a time. For it you need separate your expressions using "," (comma). Take an example:


```
#0=0.5
#1=0.866025
#2=0.57735
#3=0.797107
#4=0.707107
#5=1
```

Creating abbreviations for paths

You can become your work simpler if you create abbreviations for paths. Take an example:

```
>calculations=C:\Users\Renato\Desktop\calculations.txt
==> Your file was succesfully processed! <==
>solve txt(calculations)
==> Your file was successfully processed! <==
```

The first expression defines your abbreviation and processes the ".txt" file. The second expression processes the ".txt" file that abbreviation corresponds to.

Txt detector

Txt detector provides a quick way to process text files (.txt). Txt detector detects ".txt" files that were not solved yet. It can demand the processing of multiple files at time. Its use is simple, just drag or create a ".txt" file on the "To solve" folder and run the app or if app is already running press "Enter" button. You will be asked if you want to solve the detected files. You will find the folder "To solve" inside of the app folder, enter "to solve" to directly access the folder.

You can enable the feature in case you disabled it. Enter "enable txt detector".

```
>to solve
>
=> ATC has detected 1 file(s) on the "To solve" folder. <==
Do you want to solve the file(s)? (Yes }->1/\mathrm{ No }->\mathrm{ (0)
=>Check the folder "To solue" to see the answers file\langles\rangle generated. Enter "to solue". <==
```

Solving txt files automatically

You can automatically solve the txt file that you are editing for ATC.

1) Access ATC and enter: "auto solve txt"
```
>auto solve txt
=> Drag to here the file for automatic processing and press the button "Enter" <==
```

2) Drag the txt file that you are editing to the environment-resolution calculations of ATC and press "Enter".
>auto solve $t \times t$
\Rightarrow Drag to here the file for autonatic processing and press the button "Enter" $<==$ C:VISers Renato \backslash Desktop
\Rightarrow Waiting for the flag "SOLUE NOU" be detected in the last line of this file. $<==$ -
3) Edit your file. You must not forget to put the flag in the last line when your file is ready to be solved.

Uumple_exercise - Bloco de notas	-	\square	\times	
Ficheiro Editar Formatar Ver Ajuda				
$2+2$				
$4+8$				

4) And to automatically solve it: Press "Ctrl+s" (e.g., in case you are using notepad.exe). The file with the answers must appear in instants.
```
    - example_exercise_answers - Bloco de notas
        \(-\quad \square\)
```

 Ficheiro Editar Formatar Ver Ajuda
 \begin{tabular}{ll}
 \hline$>2+2$ \& A

$\# 0=4$

$>4+8$

$\# 1=12$ \&

$>$
\end{tabular}

5) Note that the flag "SOLVE_NOW" is automatically removed from the original file after it has been processed.
\square example_exercise - Bloco de notas $\quad-\quad \square$
Ficheiro Editar Formatar Ver Ajuda
$2+2$
$4+8$

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Run ATC from Windows command-line

Have you ever dreamed with a great calculator for Windows command-line?
All you need to do is enter the command "atc from cmd" and permit changes giving administrator privileges to perform the activation of the feature.

Activation steps:

1) Enter the command "atc from cmd" in ATC.
```
>atc from cmd_
```

2) You will be asked to permit changes by Windows command-line. You need to click on "Yes" button.
3) If you have said yes to the changes, you can now, try use atc from cmd. The syntax to use is simple as shown below. Note that you need to open a new Windows commandline after the activation.

4) Now use your imagination and enjoy Advanced Trigonometry Calculator in your Windows command-line.
5) Now with the activation you can easily open atc. Just open cmd.exe and enter "atc".

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

This feature permits the complete use of ATC in any user path where user are navigating in the Windows command-line.

Note: If for some reason you want disable this feature. Check this link:
http://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-lineaccess/

Run ATC over Windows command-line

After entering the command "atc over cmd" you will be able to work in cmd as if you were running ATC directly by double click on the ATC executable. For reproduce this example, please don't forget entering the command "atc from cmd" and activate that feature.

Below is an example about what you can do.

```
[0.4.Selecionar Advanced Trigonometry Calculator v1.8.8 ==) ATC is ready to proces...
```

Microsoft Windows [Uersion 10.0.14393]
(c) 2016 Microsoft Corporation. Todos os direitos reservados.
$\mathrm{C}: \backslash$ Users \backslash Renato Freitas>atc $2+2 i$
$H 0=2+2 i$
Real part:
In binary $=10$
In octal=2
In hexadecimal=2
Imaginary part:
In binary=10
In octal=2
In hexadecimal=2
Real part:
2月d (deci-)
Imaginary part:
=20d (deci-)
Saturday, December 17th, 2016, 12h 53m 5s
C: \Users \backslash Renato Freitas >atc atc over cmd
\Rightarrow ATC is meady to ppocess data. <==
$>2+2+2+2 \wedge 10+2+2+2 \wedge 4$
\Rightarrow Processing... <==
4 = $=1$ 日5
Real part:
In binary 1 , $000001101 \times 10^{\wedge} 1010$
In octal=032
In hexadecimal=41 A
Real part:
$=1.05 \mathrm{k}$ (kilo-)
Saturday, December 17th, 2016, 12h 53m 35s
\Rightarrow Processed in Os and 52 ms . ATC is ready to process more data. <== >

Current settings

See the current settings of ATC to easily manage its use.

Opentxt

Autocomplete

Scripting features

print, get, and sprint

The goal of the scripting feature is to provide quick means to perform tasks repeatedly.

The scripting feature comprises the use of all mathematical functions, commands and features that the user can enjoy in the "environment-resolution calculations" and it is an extension of the processing of text files (.txt) feature. ATC folder has a sub folder called "Scripts examples" that you can easily access by enter "scripts examples". As the folder name says it is a folder with examples of scripts that you can use/modify, and they serve as example for you to create your own atc scritps.

Script example:

```
cos+sin - Bloco de notas
- }\square
Ficheiro Editar Formatar Ver Ajuda
print("Enter the angle:")
get(angle)
print("\nsin(%G)\t\t+\tcos(%G)\t\t=\t%G\n", angle, angle,sin(angle)+cos(angle))
NO_ANSWERS_FILE
```

Its output:

You can find the script example above in the folder "Scripts examples". Just drag and drop the file "cos+sin.txt" to the ATC environment-resolution calculations and press "Enter" key you will face the output.

As you may already understood there are print() and get() functions to print the output and get the input, respectively.

The print() function is a emulation of the $\operatorname{printf}()$ from C programming language, so the syntax is truly the same. If you know how to use printf() from C you know how to use print() function.
"NO_ANSWERS_FILE" is a flag that informs the app that you doesn't want save and see the answers file that is created after processing the inputted txt file .

```
gret(hoje)
3
>hoje
#5=23
>get(marauilha)
'Portugal"
>print(mawauilha)
Portugal
```

The get() function can read a string or an expression:

- To save a string you need the quotation marks for atc understand the input as text and save the string.
- Strings are saved in the folder "Strings" that is accessible by enter "strings" and can be listed by enter "see strings".
- To save a value all that you need is to respond with an expression, atc will save the solution value as a variable.

```
>sprint<datefndTime,"%d-%d-%d %d:%d",24,2,2016,22,14)
>print<dateAndTime)
24-2-2016 22:14
>print("%s",dateAndTime)
24-2-2016 22:14
```

The sprint() function is a emulation of the sprintf() from C programming language, such as print() from printf().

As you may observe above, you have two ways to use the print(): you can print a string, in this case "dateAndTime" as print() acts like puts() from C programming language or you can use the printf() text syntax.

You can easily check the printf() syntax from the url:
http://www.cplusplus.com/reference/cstdio/printf/

Compose commands

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

```
    day of week - Bloco de notas
Ficheiro Editar Formatar Ver Ajuda
script
print("Enter a day");
get(day);
print("Enter a month (1-12)");
get(month);
print("Enter a year");
get(year);
sprint(expressionDayofWeek,"dayofweek(d%dm%dy%d)",day,month,year);
composecommand(expressionDayofWeek);
```

Enter a day
?
Enter a month (1-12)
4
Enter a year
2018
y2018m4d7=Saturday
while and for

```
while_example - Bloco de notas
Ficheiro Editar Formatar Ver Ajuda
script
conta=_100;
while(conta<=100){
        print("%d",conta);
        conta=conta+1;
}
script
print("\n\nMultiplication Table 1-100\n");
x=0;
j=0;
for(x=1;x<=100;x=x+5){
    for(j=1;j<=10;j=j+1){
    print("%dx%d=%d\t%dx%d=%d\t%dx%d=%d\t%dx%d=%d\t%dx%d=%d",x,j,x*j,x+1,j,
(x+1)*j,x+2,j,(x+2)*j,x+3,j,(x+3)*j,x+4,j,(x+4)*j);
    }
    print(" ");
}
```

if and else

```
conditions_script_example - Bloco de notas
Ficheiro Editar Formatar Ver Ajuda
script
print("Enter first number:");
get(firstnumber);
print("Enter second number:");
get(secondnumber);
if(firstnumber>secondnumber){
print("first number is greater than second number");
}
else{
if(firstnumber<secondnumber){
print("first number is small than second number");
print("Enter a value: ");
get(firstvalue);
print("Enter a value: ");
get(secondvalue);
multi=firstvalue*secondvalue;
print("\nResult: %G",multi);
if(multi>=0){
print("Positive");
}
if(multi<0){
print("Negative");
}
}
}
print("Portugal");
```

Switch case and cls()

```
 switch.txt - Bloco de notas 
Ficheiro Editar Formatar Ver Ajuda
script
status=1;
while(status!=1){
cls();
print("\nPortuguese -> 1\nEnglish -> 2\nFrench -> 3\n");
get(Option);
switch(Option){
    case 1:
    print("Ola");
    break;
    case 2:
            print("Hello");
            break;
    case 3:
            print("Salut");
            break;
        default:
            print("Adeus!");
}
print("Exit? (Yes-> 1)");
get(status);
```

Portuguese -> 1
English -> 2
Fwench -> 3
0la
Exit? (Yes-> 1)

```

Break


\section*{Return}
```

return_v2.tx... -
Ficheiro Editar Formatar Ver Ajuda
script
x=0;
result=0;
for(x=0;x<1000; x=x+1){
result=x!;
if(result>1E6){
return x;
}
}
print("%G",x);
Ln 1, (

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

"C:\Users\Renato Freitas\Desktop\Latest code and executables\return_u2.txt"
11
>

```

Replace
```

script
text="AAAAA";
char="A";
charnew="B";

```


Change -> text="CAAAC";


Syntax of replace function:
replace(data_to_find \(\backslash\) replacement_to_found_data \(\backslash e x p r e s s i o n \_w i t h \_d a t a \ 0 \_o r \_1 \_\left(m e a n i n g \_~\right.\) below))

0 means all found cases
1 means just the first found case
Simple way to memorize: \(1 / 0\) is equals to infinity and \(1 / 1\) is equal to 1 .

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Replace By Index
```

script
text="AAAAA";
char="A";
charnew="B";
newtext=replacebyindex(char\charnew\text\2\0);
print("%s",newtext);

```

AABBB

Syntax of replacebyindex function:
replacebyindex(data_to_find \(\backslash\) replacement_to_found_data\expression_with_data\index_start _replacing\0_or_1_(meaning_below))

0 means all found cases
1 means just the first found case
Simple way to memorize: \(1 / 0\) is equals to infinity and \(1 / 1\) is equal to 1 .
The index_start_replacing is the value of the real text index minus 1 , for scripting all indexes start on 0 .

\section*{Count Occurrences}
```

script
print("Enter a expression:");
get(totaldata);
print("Enter the data to count the occurrences in the expression:);
get(data);
value=countoccurrences(data\totaldata);
print("Data has been found %d times in the expression.",value);

```
```

"C:\Users\renat\Pictures\Advanced Trigonometry Calculator\Scripts examples\countOcurrences.txt
nter a expression:
"AAAAAAAAAAAAAAAAAAAAAAAAAAA"
Enter the data to count the occurrences in the expression:
"A"
Data has been found 26 times in the expression.

```

Delete X Occurrences
```

script
print("Enter a expression:");
get(TotalTxt);
print("Enter the data to be deleted:);
get(Txt);
print("Enter the number of times to be deleted:");
get(num);
Text=deletexoccurrences(Txt\TotalTxt\num);
print("Result: %s",Text);

```
```

AAAAAAAAAAAAAAAAAAAABBBB"
Enter the data to be deleted:
"B"
Enter the number of times to be deleted:
Result: AAAAAAAAAAAAAAAAAAA

```
C: Users \renat Desktop \ATC Projects \Advanced Trigonometry Calculator \Advanced Trigonometry Calculator Scripts examples \deletexoceurrences.tx

Is Contained
```

script
print("Enter a expression:");
get(totalData);
print("Enter a bit of the expression:");
get(data);
if(iscontained(data\totalData)){
print("As expected! Thank you!");
}
else{
print("Oh no... you have forgotten the bit.);
}

```
```

"C:\Users\renat\Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isContained.txt"
'Eu sou português!"
Enter a bit of the expression:
'Eu sou"
As expected! Thank you!
"C:\Users\renat\Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isContained.txt"
Enter a expression:
"Eu sou português!"
Enter a bit of the expression:
"Eu não sou"
Oh no... you have forgotten the bit.

```

Calc
```

script
continue=1;
while(continue==1){
print("Enter a expression:");
get(data);
Result=calc(data);
print("Result: %G",Result);
print("Continue? (Yes-> 1/No-> any value)");
get(continue);
}

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

\#c.\Users renat (D)
nter a expression:
"2+2+2"
2+2+2
Result: 6
Continue? (Yes-> 1/No-> any value)
0
"C:\Users\renat\Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\calc.txt
'tan(30)/tan(30)"
Result: 1
Continue? (Yes-> 1/No-> any value)
1
Enter a expression:
'2+2+2+2+2+2+2+2+2+22+2"
Result: 42
Continue? (Yes-> 1/No-> any value)
0

```

Is Equal
```

script
print("Enter a expression:");
get(totalData);
print("Enter again the same expression:");
get(data);
if(isequal(data\totalData)){
print("As expected! Thank you!");
}
else{
print("Oh no... the expressions don't match.);
}

```
```

"C:\Users\renat \Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isEqual.tx
nter a expression:
"Water for me"
Enter again the same expression:
"Water for me"
As expected! Thank you!
\"C:\Users\renat\Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isEqual.txt"
Enter a expression:
"Water for me"
Enter again the same expression:
"Water for you"
Oh no... the expressions don't match.

```
```

script
print("The expected is that the value will not be accepted.");
print("Enter a value negative:");

```


Is To Write
```

script
print("First case:");
data="NO_ANSWERS_FILE";
print("%s",data);
if(istowrite(data)){
print("ATC will create a file with answers.");
}
else{
print("ATC will not create a file with answers.");
}
print("Second case:");
Data="ANSWERS_FILE";
print("%s",Data);
if(istowrite(Data)){
print("ATC will create a file with answers.");
}
else{
print("ATC will not create a file with answers.");
}

```
```

"C:\Users\renat \Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isToWrite.txt
irst case:
NO_ANSWERS_FILE
ATC will not create a file with answers.
Second case:
ANSWERS_FILE
ATC will create a file with answers.

```

Is Variable
```

script
script
print("First case is valid variable");
data=12;
data="data";
if(isvariable(data)){
print("Great! That is a variable!");
}
else{
print("Ups... not a variable.");
}
print("Second case is an invalid variable");
if(isvariable(daTa)){
print("Great! That is a variable!");
}
else{
print("Ups... not a variable.");
}

```
```

"C:\Users\renat\Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isVariable.txt"
irst case is valid variable
Great! That is a variable!
Second case is an invalid variable
Ups... not a variable.

```

Is Contained Variable
```

script
print("First case is a present valid variable");
value=12;
value="value"
data="value+7";
if(iscontainedvariable(value\data)){
print("Great! Your variable has been found!");
}
else{
print("Ups... variable not found.");
}
print("Second case is an not present variable");
value=12;
data="sqrt(7)";
if(iscontainedvariable(value\data)){
print("Great! Your variable has been found!");
}
else{
print("Ups... variable not found.");
}

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

"C:
sers\renat Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isContainedVariable.txt"
irst case is a present valid variable
Great! Your variable has been found!
Second case is an not present variable
Jps... variable not found.

```

\section*{Is Contained By Index}
```

script
print("Enter a expression:");
get(totalData);
print("Enter a bit of the expression:");
get(data);
print("Enter the index:");
get(index);
index="index"
if(iscontainedbyindex(data\totalData\index)){
print("As expected! Thank you!");
}
else{
print("Oh no... you have forgotten the bit or provide wrong index number.);
}

```
```

"C:\Users\renat Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isContainedByIndex.txt"
inter a expression:
"AAAAAABBBB"
Enter a bit of the expression:
"A"
Enter the index:
Oh no... you have forgotten the bit or provide wrong index number.
"C:\Users\renat Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\isContainedByIndex.txt"
-nter a expression:
"AAAAAABBBB"
Enter a bit of the expression:
"A"
Enter the index:
As expected! Thank you!

```

Strlen
```

script
print("Enter a expression:");
get(data);
size=strlen(data);
print("Length of expression: %G",size);

```
```

"C:\Users\renat Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\strlen.txt
nter a expression:
"Ola ola"
-ength of expression: }
"C:\Users\renat \Desktop\ATC Projects\Advanced Trigonometry Calculator\Advanced Trigonometry Calculator\Scripts examples\strlen.txt"
nter a expression:
"AA"
ength of expression: 142

```

\section*{Calculation features}

\section*{Calculations mode}

With the terms "rad", "deg", and "gon" you can force a trigonometry function to be calculated in radians, degrees, and gradians, respectively. So, although you have configured the calculations mode for trigonometry functions, you can use all of them in the same expression that you are entering and get the correct answer. So, an example:
```

>gonsin<33.3333)
=0.5
>radsin(pi/6)
=0.5
>degsin<30)
=0.5
>gonsin(33.3333)+rads in(pi/6)+degs in(30)
=1.5

```
```

)atan\langletan<30-13i\rangle)+asin\langlesin<15-7i\rangle)+acos}\langle\operatorname{cos}\langle9-20i\rangle
70=54-40i
30-13i+15-7i+9-20i
\#1=54-40i

```

\section*{SI prefixes}

You can enter your values in a SI prefixes manner, for it you need enter a 'P' previously of prefix, because ' \(P\) ' says to the application that you are entering a value in a SI prefixes manner. To enter the value " \(2 p\) ", you need to enter " 2 Pp ". The prefixes replace the need of scientific notation.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
>dp0dp2Pki+5PM \\
\(\# 0=5000000+2000 i\)
\end{tabular} \\
\hline \[
\begin{aligned}
& >1.5 \mathrm{Pu}+2 \mathrm{Pm} \\
& \# 1=0.0020015 \\
& =2.0015 \mathrm{~m} \text { (milli-) }
\end{aligned}
\] & \begin{tabular}{l}
Real part \(=5 M\) (mega-) \\
Imaginary part=2k <kilo->
\end{tabular} \\
\hline
\end{tabular}

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

The table below has the equivalence between Prefix SI and its corresponding value.
\begin{tabular}{|c|c|}
\hline Way of putting Prefix SI & Equivalent value \\
\hline PY & \(1 \mathrm{E}+24\) \\
\hline PZ & \(1 E+21\) \\
\hline PE & 1E+18 \\
\hline PP & 1E+15 \\
\hline PT & \(1 \mathrm{E}+12\) \\
\hline PG & 1E+9 \\
\hline PM & 1E+6 \\
\hline Pk & 1000 \\
\hline Ph & 100 \\
\hline Pda & 10 \\
\hline Pd & 0.1 \\
\hline Pc & 0.01 \\
\hline Pm & 0.001 \\
\hline Pu & 1E-6 \\
\hline Pn & 1E-9 \\
\hline Pp & 1E-12 \\
\hline Pf & 1E-15 \\
\hline Pa & 1E-18 \\
\hline Pz & 1E-21 \\
\hline Py & 1E-24 \\
\hline
\end{tabular}

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

\section*{Numerical Systems}

You can enter your expression values in four different numerical systems. So, an example:
```

>sin(30)
\#1=0.5
Real part:
In binary=0.1
In octal=0.4
In hexadecimal=0.8
>0
\#2=30
Real part:
In binary=11110
In octal=36
In hexadecimal=1E
sin}\langle3|)+\operatorname{sin}\langleB11110)+\operatorname{sin}\langle036)+sin<H1E
\#3=2
Real part:
In binary=10
In octal=2
In hexadecimal=2
>_1.5
4=-1.5
Real part:
In binary=-11111110.1
In octal=-77777776.4
In hexadecimal=-FFFFFFFE. }
>1.5 +B-111111110 _1+0-77777776 _ 4 +H-FFFFFFFE . }
\#5=-6
Real part:
In binary=-11111010
In octal=-77777772
In hexadecimal=-FFFFFFFA

```
B - Binary, O-Octal, H - Hexadecimal

You can get your numerical systems answer in scientific notation. So, an example:
```

>2^900
\#1=8.45271E+270
In binary=1x10^1110000100
In octal=1\times10^454
In hexadecimal=1x10^E1

```

\section*{Equations systems solver}

You can solve equations systems. Take an example:
\[
\left\{\begin{array}{c}
2 x+4 y-5 z=9 \\
5 x-6 y+4 z=15 \\
7 x+3 y-2 z=12
\end{array}\right.
\]
\(2 \quad 4 \quad-5 \quad 9\)
\(\begin{array}{llll}5 & -6 & 4 & 15\end{array}\)
\(\begin{array}{llll}7 & 3 & -2 & 12\end{array}\)
```

>solve equations system〈2\4_5\9;5_6\4\15;7\3_2\12)
x1=2.05263
x2=-3.099023
x3=-3.45113

```

As you can observe, ' \(\backslash\) ' character separates the columns and ';' the rows.
\[
\left\{\begin{array}{c}
(5-2 \mathrm{i}) \mathrm{x}+(-4+5 \mathrm{i}) \mathrm{y}+(2+6 \mathrm{i}) \mathrm{z}=3+7 \mathrm{i} \\
(2-7 \mathrm{i}) \mathrm{x}+(4-2 \mathrm{i}) \mathrm{y}+(4+9 \mathrm{i}) \mathrm{z}=15-4 \mathrm{i} \\
(2+9 \mathrm{i}) \mathrm{x}+(-2+12 \mathrm{i}) \mathrm{y}+(3-10 \mathrm{i}) \mathrm{z}=6+8 \mathrm{i}
\end{array}\right.
\]
\begin{tabular}{cccc}
\(5-2 i\) & \(-4+5 i\) & \(2+6 i\) & \(3+7 i\) \\
\(2-7 i\) & \(4-2 i\) & \(4+9 i\) & \(15-4 i\) \\
\(2+9 i\) & \(-2-12 i\) & \(3-10 i\) & \(6+8 i\)
\end{tabular}
```

>solve equations system\langle5-2i_4+5i\2+6i\3+7i;2-7i\4-2i\4+9i\15-4i;2+9i_2+12i\3-10i\6+8i)
c1=0.710975-1.80866i
x2=2.06809-0.064861i
<3=1.58033-1.3083i

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

\section*{Variables}

You can create your variables and use them on the next entered expressions. So, an example:
```

>fgh=45
$=45$
>kl=56
$=56$

```
>f gh+kl
\(=101\)
>kasd=f \(\mathbf{g h} *\) kl
2520
>kasd=kasd^2
\(=6.3504 \mathrm{E}+006\)
>kasd
\(=6.3504 \mathrm{E}+006\)

As you may notice the creation and use of variables is a cool feature that allows an easier use of results of expressions already solved. And so, you have the possibility of create expressions easier than with just numeric digits and functions.

Use of previous results

You can use previous results easily because they have a name. So, an example:
```

>2.4
\#G=2.4
>*7.9
\#1=18.96
>*1.67
\#2=31.6632
>*6.3
\#3=199.478
>*9
\#4=1795.3
>\#4/9/6.3/1.67/7.9
\#5=2.4
>\#5+\#0
\#6=4.8
>\#6/2
\#7=2.4

```

Numerical systems places

You can choose how many decimals, binary, octal and hexadecimals places you want that exist when the answer is displayed. For example, you just need enter "dpnumberdp" and the expression that you want to be calculated to define the number of decimal places. So, an example:
```

>dp1Gdppi*1GOG
\#O=3141.5926535898
>bp1Gbppi*1000
\#1=3141.59
In binawy=110001000101 -10010111
In octal=6105 - 456050753412176314
In hexadecimal=C45 . 970A3D70A3F330002023D
>op10oppi*1000
\#2=3141.59
In bina*y=1 -1000100010110010111\times10^1011
In octal=6105.4560507534
In hexadecimal=C45 - 970A3D70A3F330002023D
>hp10hppi*1000
\#3=3141.59
In binary=1.1000100010110010111x10^1011
In octal=6105 .456050753412176314
In hexadecimal=c45 . 970A3D70A3
>dp10dphp10bpop10ophp10hppi*1000
\#4=3141.5926535898
In binary=110001000101 10010111
In octal=6105 .4560507534
In hexadecimal=C45 -970A3D70A3
$\mathrm{dp} \rightarrow$ decimal places
bp \rightarrow binary places
op \rightarrow octal places
$\mathrm{hp} \rightarrow$ hexadecimal places

```

Note that numerical systems response is used to give you the answer. You don't have to enable it in this case because the application detects that this feature is needed and use it automatically.

\section*{Verification of entered data}

There is a high capacity of verification of entered data to detect entered errors, like commands badly entered, e.g. "aboyt" instead of "about", double arithmetic operator entered, e.g. " \(2++2+2\) " instead of " \(2+2+2\) ", an arithmetic operator entered at the end of an expression e.g. " \(2 \sin (30)+\) ", and variables and functions names badly entered. It works like a high performance of data verification feature.
```

>2++2+2
Error in symtax.
>aboyt
Error in syntax.

```

\section*{Parentheses}

When entering complex expressions you can use parentheses, by using these characters "(, [, \{, ), ], \}". So, an example of error message due to a bad use of parentheses:
```

>asin<sin(30)
Error in parentheses.
=>}\mathrm{ The number of left and right parenthesis entered must be equal.
=> Enter "[" or "{" is the same as "<"and "]" or "}" is the same as ")".
=> The expression that you entered has 2 left parenthesis and 1 right parenthesis.

```

To help you, this application informs in this error message the number of right and left parentheses entered, in this case two left parentheses and one right parentheses.

\section*{Constants and answer}

You may already know \(\pi\) and \(e\) constants but enter their values is boring, so you can enter these values by enter "e" and "pi". So, two examples:

Advanced Trigonometry Calculator - The open-source advanced command-line calculator


Also, instead of entering the previous result as value you can enter "ans". It's useful when you want to do more calculations related with the last answer.
```

>esin<30)+esin<30)
\#|=2.71828
>picos(60)+picos(60)
\#1=3.14159
>shoes=0.5
\#2=0.5
>pishoes+pishoes
\#3=3.14159
>shoese+shoese
\#4=2.71828

```

Arithmetic operations

You can easily perform arithmetic operations with a previous and a current expression that you are entering, using the characters ",,\(+- *^{*} /,^{\wedge}\) ". So, an example using degree mode:
```

<+cosec(30)
=4
>^cosec(30)^2
=256
>4^4
=256
>cosec(30)
=2

```

\section*{Deduction of multiplications}

Through smart algorithms Advanced Trigonometry Calculator provides capabilities to deduct multiplications in the expressions that you enter. So, enter multiplication symbol is not completely needed in all cases of multiplications. Basically, this calculator can detect different types of ways to enter values, and so it can deduct multiplications when between two values there's no arithmetical symbols.

Examples of this feature can be seen below:
```

yy=7
\#0=7
z=2
\#1=2
>yz
\#2=14
>zy
\#3=14
>compras=12
\#4=12
>carro=50000
\#5=50000
>carrocompras
\#6=600.000
>carrosin(30)
\#7=25000
>dois=2
\#8=2

```
```

>\#|

```
>#|
#1=1000
#1=1000
>#Gsin(30)
>#Gsin(30)
#2=500
#2=500
>(B1 .111101xB10^B1001)sin(30)
>(B1 .111101xB10^B1001)sin(30)
#3=500
#3=500
>01750sin(30)
>01750sin(30)
#4=500
#4=500
>H3E8sin(30)
>H3E8sin(30)
#5=500
```

\#5=500

```

User functions

Through scripting feature, ATC is able to process user functions. A user function is a script that has a variable called "InputX" X is replaced by \(A, B, C, D\) as the number of inputs increase and on what the script last line with a mathematical expression will have its solution as the returned value of the user function.

You can easily convert your script into a user function changing all the file name characters to Latin alphabet letters (uppercase and lowercase).

User functions are accessible by the command "user functions"
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { >atc_trigXpto<30) } \\
& \# 6=1.73205
\end{aligned}
\] \\
\hline >user functions & \[
\begin{aligned}
& \text { >atc_trigXpto(30)+atc_trigXpto(30) } \\
& \# 7=3.4641
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { >atc_trigXpto (30) } \\
& \text { 时 }=1.73205
\end{aligned}
\] & \[
\begin{aligned}
& \text { >atc_return (30) } \\
& \# \theta=270
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { >atc_trigXpto(30)+atc_trigXpto(30) } \\
& \$ 1=3.4641
\end{aligned}
\] & \[
\begin{aligned}
& \text { >atc } \operatorname{sum}\langle 4 \backslash 5 \backslash 6\rangle \\
& \# 1=15 \\
& \text { >atc_multiply〈5> } \\
& \# 2=5+5 i
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline\(\square\) trigXpto.txt - Bloco de notas & - \\
Ficheiro Editar Formatar Ver Ajuda \\
valueT=InputA \\
atc_cosMinusSin(valueT)+atc_sinPlusCos(valueT) \\
\(<\) & Ln 1, Col 1
\end{tabular}
```

 cosMinusSin.txt - Bloco de notas }-\quad
 Ficheiro Editar Formatar Ver Ajuda
valueB=InputA
cos(valueB)-sin(valueB)
<
Ln 1, Col 14

```
\begin{tabular}{|c|c|}
\hline \(\square\) sinPlusCos.txt - Bloco de notas & \(\square \times\) \\
\hline Ficheiro Editar Formatar Ver Ajuda & \\
\hline valueA=InputA \(\cos (\) valueA) \(+\sin (\) valueA) & \\
\hline < & > \\
\hline & Ln 1, Col 1 \\
\hline
\end{tabular}
return.txt - Bloc... \(\quad \square \quad \square\)
Ficheiro Editar Formatar Ver Ajuda
script
\(y=\) InputA;
\(\mathrm{x}=0\);
for ( \(x=0 ; x<14 ; x=x+1)\{\)
        if \((x==10)\{\)
            return ( \(x-1\) )* y ;
    \}
\}
\(\operatorname{Ln} 1, C_{1}\)
\begin{tabular}{|l|l|l|}
\hline\(\square\) sum.txt - Bloco de ... & - & \(\square\) \\
Ficheiro Editar Formatar & Ver & Ajuda \\
\hline valueA=InputA & & \\
valueB=InputB & & \\
valueC=InputC \\
valueC+valueB+valueA & & \\
\hline & & Ln 4, Co \\
\hline
\end{tabular}

After entering "user functions" will be opened the folder where you must include your user functions to them be treated as user functions, and so you can enjoy your own functions inside your mathematical expressions.

User functions are a new world for ATC users. You will find it a feature very useful.

Factory reset ATC with a user function!
factoryResetATC - ...
Ficheiro Editar Formatar Ver Ajuda
reset all
restart atc
>atc_factoryResetATC(>

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Quadratic equations solver

ATC can solve quadratic equations by applying the quadratic formula (below).
\[
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\]

An example to solve:
\(2 x^{2}+7 x+4=0\)

Identify \(\mathrm{a}, \mathrm{b}\) and c :
\(a=2 \quad b=7 \quad c=4\)

Now can solve:
```

>solve quadratic equation<2\7\4)
x1=-0.719224
x2=-2.78078

```

Note that \(\mathrm{a}, \mathrm{b}\) and c could be complex numbers!

Take an example:
\[
(2+8 i) x^{2}+(3-5 i) x+10-4 i=0
\]
```

>solve quadratic equation<2+8i\3-5i\10-4i)
x1=-0.646247-0.5417i
x2=1.14625+1.0417i

```

Verbose resolution

Verbose resolution is a feature that allows the user to know how its math expression has been processed until the result, the answer, have been obtained by ATC.

This feature helps users to learn and explore math resolution of math expressions.

Function domain error
```

>sin(0/0)
Error in function domain.
==> For sine function the valid domain is [-INF,INF].
==> Your function argument: -NAN<IND>

```

Solver
```

solver(x-(e+pii))
t0=2.71828+3.14159i

```
>solver(squt \((x)-10)\)
\#2=100
>solver \(\langle x-\langle 2+8 i\rangle)+\) solver \(\langle x-\langle p i+e i\rangle)\)
\(\# 1=5.14159+10.7183 i\)
```

solver<scret(x)-12)
\#|=144
>solver(1//(x-8)+2x-4)
\$1=2.08452
>x=\#1
\#2=2.08452
1/(x-8)+2x
\#3=3.99999
>-

```

Definite Integral
\[
\int_{0}^{\pi} \sin (x)=2
\]
```

>mode
=> Gonfiguration of mode <==
adian -> 1
legree -> 2
gradian -> 3
1
solver(0\pi\sin(x))
\#1=2.00033
>

```

Equation Solver

ATC can solve polynomials.
```

roots to polynomial<2+5i\2-5i\7+2i\7-2i\pi+ei\pi-ei)
l
(1+\emptyseti) x^3+(-11+-2i) (^ 2+\langle57+8i)x+\langle-203+-58i)

```

```

Final polynomial:

```

```

Export result? <Yes -> 1\ No -> G)
>solve equation<1_24.2832\268.356_1795.74\7801.7_20323.1\26526.6)
x1=6.99991 +1.99957i
2=6.99991-1.99957i
x3=3.14161+2.71843i
< x5=2.00007-4.99998i
Export result? <Yes -> 1 \ No -> 0)

```
```

solve equation<1\44\656\3098_10861_124126_181316\444120\856800)
x1=-1?
<1=-1?
x3=-1B
l
x5=5
x7=2
Export result? (Yes }->1\mathrm{ \ No }->\mathrm{ (G)
0

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

solve equation(2x 2-7x-12)
x1=4.7604
<2=-1 -2604
Export result? <Yes }->1\mathrm{ \ No }->\mathrm{ (B)
0
>solve equation(2_7_12)
x1=4.7604
x2=-1.2604
Export result? (Yes }->1\mathrm{ \ No }->\mathrm{ (0)
E
solver(1/4x+5/3x-12)
\#|=6.26087
solve equation(1/4x+5/3x-12)
x1=6 .26087
Export result? (Yes }->1\mathrm{ \ No }->0\mathrm{)
J
solve equation (}2\mp@subsup{x}{}{\wedge}2-7x-12+3\mp@subsup{x}{}{\wedge}3
c1=1.82098
x2=-1.24382-0.80593i
x3=-1.24382+0.80593i
Export result? (Yes -> 1 \ No }->\mathrm{ (0)
B
>solve equation (2x^2-7x-12+3\mp@subsup{x}{}{\wedge}3+2\mp@subsup{x}{}{\wedge}3
x1=1.53351
<2=-0.966753-0.793997i
x3=-0.966753+0.793997i
Export result? <Yes -> 1 \ No -> 0)
0
>solve equation(5\2_7_12)
x1=1 - 53351
x2=-0.966753-7.793997i
x3=-0.966753+0.793997i
Export result? (Yes }->1\No \> ()
E
>solve equation((((x-8)(x-9)(x-12))/(x-8)+((x-12)(x-20)(x-24))/(x-12))(x-2))
< 1 =?
*2=16.25-5.471521

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Graph with table view

urrent settings:
Xmin: -10 | Xmax: 10 | Xscale: 1 | Ymin: \(-1|Y \max : 1| Y s c a l e: 0.1\) |
egend:
in \((x) \rightarrow \vec{x}\)
\(.5 \cos \langle x\rangle \xrightarrow{\rightarrow} y\)



Triangles Rectangles Solver
```

>triangles rectangles solver
This solver will give to you all trigonometrics unknowns in any triangle rectangle.
If you don't know how to answer to a request, please, enter '_1' and hit 'Enter';
If you know how to answer, enter the answer and hit 'Enter';
You must enter angles in degrees because, if not, you will get wrong results.
Let's start?
Enter the hypotenuse value: 1000
Enter the angle formed by the hypotenuse with the adjacent: 30
Report of results
The percentage of slope is equal to 57.735027 percent;
The adjacent is equal to 866.025;
The opposite is equal to 500;
The opposite is equal to 500;
The hypotenuse is equal to 1000;
The angle formed by the hypotenuse with the adjacent is equal to 30;
The angle formed by the hypotenuse with the opposite is equal to 60.
Do you want to export the report? <Yes -> 1 / No -> 0)
Drag-and-drop to here your txt file to save the report.
'G:\Users\Renato Freitas\Desktop\relatorio.txt"
=> Your report was saved successfully. <==
Do you want to analyze more some triangles rectangles?
(Yes }->1\mathrm{ / No }->>\mathrm{ (b)
O

```

Arithmetic Matrix Solver

Advanced Trigonometry Calculator－The open－source advanced command－line calculator
```

What to do?
Sum of Matrices -> 1
Subtraction of Matrices -> 2
Multiply a Matrix by a complex/real number -> 3
Multiplication of Matrices -> 4
Transpose a Matrix -> 5
nuewse a Marix ->
nverse a Matrix ->
Oower a Matrix -
Matrix Rank -> 8
8
Matrix:
4\6\12;6\12\9;5\12\20
Matrix Rank:
4+0i 6+0i 12+0i
0+0i 3+日i -9+0i
+日i 日+日i 18.5+Gi
Rank: 3
Export result? (Yes -> 1 \ No -> 0)
0
Continue? (Yes -> 1 / No -> 0)
G
>

```

Calculation of Determinant
```

det\langle2\3\4;4\5\6;2\7\4)
\#0=16
det<2\3\4;4\5\6;2\7\4)+det\langle2\3\4;4\5\6;2\7\4)
\#1=32
>det (2\3\4;4\5\6;2\7\4)*det\langle2\3\4;4\5\6;2\7\4)
\$2=256
>det<2\3\4;4\5\6;2\7\4)/\operatorname{det}\langle2\3\4;4\5\6;2\7\4)
\#3=1
>

```
>det \(\langle 2+7 i \backslash 3 \backslash 4 ; 4 \backslash 5-20 i \backslash 6 ; 2+5 i \backslash 7 \backslash 4-20 i\rangle\)
\(\# 0=76-2924 i\)

Roots to Polynomial

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

rroots to polynomial(4\12\3\4\6)
(1+0i) x^2+(-16+0i)x+(48+0i)
(1+0i) x^3+(-19+0i) >^^2+(96+0i)x+(-144+0i)
(1+0i) x^4+(-23+0i) x^3+(172+0i) x^2+(-528+0i)x+(576 +0i)
Final polynomial:
(1+0i) x^5+(-29+0i) x^4+(310+0i) x^3+(-1560+0i) \mp@subsup{x}{}{\wedge}2+(3744+0i)x+(-3456+0i)
Export result? (Yes }->1\No \ \ 0)
D
>solve equation<1_29\310_1560\3744_3456)
x1=12
<2=4+1 - 23076E-07
x3=4+4.10999E-07i
\times4=6
x5=3
Export result? (Yes }->1\mathrm{ \ No }->\mathrm{ (呈)
0

```

If command

Returns True or False.
\(>\) if (asin \(\left.\left[\sin [30]^{\wedge} 2+\cos [30]^{\wedge} 2\right]>89\right)\)
True
\(>\)
```

>if(cos[30\mp@subsup{]}{}{\wedge}2+s\operatorname{in}[30\mp@subsup{]}{}{\wedge}2==1)
True
if <sin[30]>sin[29])
True
>

```

Available operators:
\(==-\) is equal to
!= - is not equal to
<= - is smaller than or equal to
\(>=-\) is greater than or equal to
> - is greater than
< - is smaller than
\&\& - and

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
|| - or

\section*{Financial Calculations}


\section*{Statistics Calculations}
```

>statistics calculations
What to calculate?
Population Measures (Mean, Variance and Standard Deviation) -> 1
Sampling (Sample mean, Sample variance, Standard Deviation) -> 2
Number Sequence
Arithmetic Sequence -> 3
Geometric Sequence -> 4
Sample Size
Find out the sample size -> 6
Find out the confidence interual -> ?
Probability
Probability of Two Events }->
Probability of a Normal Distribution -> 9
Permutation and Combination -> 10
Mean, Median, Mode and Range -> 11
1 1
Population?
Info: separate values by using '\'. Example: "20\30\60"
3\4\5\12\5
Mean: 5.8
Median: 5
Mode: 5 -> appeared 2 times
Range: 9
Largest: 12
mallest: 3
Sum: 29
Gount 5
Continue? <Yes -> 1 / No -> 0)
G

```
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Valid Confidence Level values for the option: \\
"Find out the confidence interval"
\end{tabular} & z-score ( \(\pm)\) \\
\hline 0.70 & 1.04 \\
\hline 0.75 & 1.15 \\
\hline 0.80 & 1.28 \\
\hline 0.85 & 1.44 \\
\hline 0.92 & 1.75 \\
\hline 0.95 & 1.96 \\
\hline 0.96 & 2.05 \\
\hline 0.98 & 2.33 \\
\hline 0.99 & 2.58 \\
\hline 0.999 & 3.29 \\
\hline
\end{tabular}

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
\begin{tabular}{|l|l|}
\hline 0.9999 & 3.89 \\
\hline 0.99999 & 4.42 \\
\hline
\end{tabular}

Geometry Calculations
```

>geometry calculations
What to calculate?
Areas and Perimeters:
quare -> 1
Rectangle -> 2
Parallelogram }->
Parallelogram
Criangle ->
Triangle ->
Jolumes and Surface Areas of Three-Dimensional Figures:
Rectangular Solid -> ?
Cube -> }
Right Circular Cylinder -> 9
Right Circula
Right Circular Cone -> 11
Square or Recttangular Pyramid -> 12
Square or Rectangular Pyramid -> 12
10
Radius?
4
Jolume: 268.083
Surface Area: 201.062
Continue? <Yes }->1/No\mp@code{l>
0
>

```

\section*{Physics Calculations}
```

>physics calculations
What to calculate?
Acceleration -> 1
Acceleration -> 1 -> 3
Density }->>5\mathrm{ (
Buoyancy Force -> 2
Free fall distance without air resistance }\vec{9
Newton's 2nd law }->1
Weight/Force Mass Gravity ->> 13
mpact Force -> 15
Lever Force ->
Projectile Motion -> 21
Mrojectile Mo
Torque -> 23
25
Enter the unknown value as ' }x\mathrm{ '
Initial Uelocity (m/s)?
In
Initial Velocity
%9
querage Uelocity (m/s)?
x
Average Uelocity: 45.5 (m/s)
Continue? (Yes -> 1 / No -> G)
Gon
Elastic Collision ->
Displacement >>
Free fall velocity without air resistance }->>
Free fall velocity with air resistance }->>1
Free fiction-> 12
Gravitational Force -> 14
0
Kinematics -> 16
Trajectory }->\mathrm{ - 18
Resultant Vector -> 22
Relocity -> 24

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

\section*{Unit Conversions}
```

unit conversions
What to convert?
Length -> 1
emperature -> 2
Avea -> 3
Jolume ->
leight -> 5
lime -> 6
Angle }->\mathrm{ ?
3
Your unit?
Scuare Meter -> 1
Sruare Kilometer -> 2
Scuare Centimeter ->
Square Gentimeter -> 3
Square Micrometer }->
Hectare }->
Square Mile -> ?
Squawe Yard -> 8
qquare Foot -> 9
cruawe Inch }->>1
Acwe -> 11
6
Jalue?
1
Square Meter: 10000
quare Kilometer: 0.01
Square Centimeter: 1E+08
quare Millimeter: 1E+1P
Square Micrometer: 1E+16
Hectare:
Hectare Mile= 0.00386102
Square Mile= 0.00306
Square Yard: 11959.
Square Foot: 107639
Square Inch: 1
Continue with Area conversions? (Yes }->1//No -> G
0
Continue? (Yes -> 1 / No -> @)
B

```

\section*{Microeconomics Calculations}
```

microeconomics calculations
What to calculate?
Midpoint Method for Price Elasticity of Demand -> 1
Average Fixed Cost }->
Average Uariable cost }->>
Average Total cost }->>
Unit Gost/ Average Total cost }->>
Profit -> }
Profit based on Price. Aug Unit Cost and Quantity }->
Economic Prof it }->
Cross-Price Elasticity of Demand }->
Income Elasticity of Demand }->1
Price Elasticity of Demand -> 11
Consumer Surplus -> 12
Producer Surplus -> 13
Price Elasticity of Supply }->1
Total Surplus -> }1
Total Surplus -> 15
Acc
Total Revenue?
123
Total Expenses?
100
Profit: 23
Continue? (Yes }->1/\mathrm{ No }->>\mathrm{ (D)
B
_

```

Polynomial Simplifier

Division

\(((a+a i) x+(1+a i))\)

\section*{Multiplication}

\section*{simplify polynomial \(\langle\langle\langle x-7\rangle\langle x-8\rangle\langle x-12\rangle) /\langle\langle x-7\rangle\langle x-8\rangle\rangle\rangle\langle\langle(x-7\rangle\langle x-8\rangle\langle x-12\rangle) /\langle(x-7\rangle\langle x-8\rangle\rangle\rangle\rangle\) \(\left((1+a i) x^{\wedge} 2+(24+a i) x+(144+ด i)\right)\)}

\section*{Addition}

```

(<2+0i)}x+<<24+8i))

```

\section*{Subtraction}

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
>simplify polynomial \(\langle(\langle(x-7)(x-8)(x-12)) /(\langle x-7)(x-8))\rangle-(\langle(x-7)(x-8)(x-12)) /(\langle x-7)(x-8))\rangle)\) \((\langle 0+\square i) x+\langle 日+\square i\rangle)\)

Complex simplification

```

-8)(x-12))/(<x-7)(x-8)>)<(<x-7)(x-8)(x-12))/(<x-7)(x-8))>))
<<\emptyset+\emptyseti)x+\langle1+\emptyseti))

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

\section*{Function Study}

\section*{Example 1}

Advanced Trigonometry Calculator v2.0.2 ==) Processed in 1 s and 189 ms . ATC is ready to
```

>function study(_2x^2+5x+3)
=> Zeros and intersection with yy-axis <==
It intersects the xx-axis in the points below:
(-0.50000,0)
(3,0)
It intersects the yy-axis in the point below:
(0,3.000)

Asymptotes <==

It does not have a horizontal asymptote when lim x-> +inf
It does not have a horizontal asymptote when lim x-> -inf
=>Summetwies <==
The function is not even.
The function is not odd.
There is no symmetry of the graph with respect to the yy axis or the origin.
=> Function signal <==
f(x)< | if x E]-inf, -0.500[U 13.000,+inf[

```

```

=> Monotony interval and relative extremes <==
f(x)=(2+|i)\mp@subsup{x}{}{\wedge}2+\langle5+\emptyseti\ranglex+\langle3+\emptyseti\rangle
f
x -inf 1.250 +inf
f'(x) t, \
=> Direction of concauity and inflection points <==
f
f''(x)=\langle_4+0i)
The function has no inflection points and the concavity is always facing down.
=> Codomain and absolute extremes <==
Codomain: 1-inf, 6,125]
Max: (1.250,6.125)

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

\section*{Example 2}

Advanced Trigonometry Calculator v2.0.2 \(==\) ) Processed in 109 s and 13 ms . ATC is ready to process more data. Latest ATC response v
```

=> Domain <==
Df=R\{2,-2}
=>> Zeros and intersection with yy-axis <==
t intersects the xx-axis in the points below:
<-1,0\rangle
(1,0)
It intersects the yy-axis in the point below:
(0.-0.250)
=> Asymptotes <==
Has as vertical asymptotes the lines below:
k=2
Has a horizontal asymptote when lim x-> +inf: -1.000
Has a horizontal asymptote when lim x-> -inf: -1.000
=>> Symmetries <==
The function is even.
The function is not odd.
=>> Function signal <==
Numerator-> (1+0i)-x^2
Denominator-> x^2-<4+ดi)

x	- inf	-2.000	-1.000	1.000	2.000	+ inf		
Numerator	-	-	-	0	+	0	-	-
Denominator	+	0	-	-	-	-		
$f(x)$	-	inf	+	-0.00	-	-0.00	+	0
inf	-							

(x)
=> Monotony interual and relative extremes <==

```



```

=>> Codomain and absolute extremes <==

```


```

x	-inf	-2.		0.000		2.000	+inf
f' ' (x)	-	inf	+	0. 38	+	inf	-
$f(x)$	へ	inf	1-1	-0.25	1-1	inf	

Codomain: $]$-inf,-1.000[U]-0.250, $+\inf [$

```

\section*{Example 3}

1- Advanced Trigonometry Calculator v2.0.2
```

function study(x/<x^2-9))
=> Domain<==
f=R\{3,-3}
=> Zeros and intersection with yy-axis <==
It intersects the xx-axis in the points below:
(0,0)
It intersects the yy-axis in the point below:
(0.0.000)
=> Asymptotes <==
Has as vertical asymptotes the lines below:
l}\begin{array}{l}{x=3}
{x=-3}
Has a horizontal asymptote when lim x-> +inf: 0.000
Has a horizontal asymptote when lim x->-inf: 0.000
=> Symmetries <==
The function is not even.
The function is odd.
=> Function signal <==

```

```

Denominator-> x^2-<9+ดi)

x	$-i n f$	-3.000		0.000		3.000	+ inf
Numerator	-	-	-	0	+	+	+
Denominator	+	0	-	-	-	0	+
$f(x)$	-	inf	+	-0.00	-	inf	+

=>> Monotony interual and relative extremes <==
f (x) = (< 1 + G i) x - (\theta + G i)) \ll (1 + G i) x ^ { \wedge } 2 + (G + G i) x ^ { \wedge } 1 + (- 9 + G i))
f

x	$-i n f$	-3.000	0.000	3.000	$+i n f$
$f^{\prime}(x)$	+	1.00	+	1.00	+

=> Codomain and absolute extremes <==

```


```

x	-inf	-3.		0.000		3.000	+inf
$\mathrm{f}^{\prime \prime}(x)$	-	inf	+	0.00	-	inf	+
$\mathrm{f}(\mathrm{x}$)	1 ${ }^{\text {P }}$	inf	1-	0.00	^^	inf	1-1

Codomain:]-inf,0.000[U]0.000,+inf [

```
\(>\)

Reduction to the same denominator

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

>olver ((x-7)/(x+6)+(x-12)/(x+9)-(x-24)/(x+5))
\#4=-6.48337
>x=\#4
\#5=-6.48337
>((x-7)/(x+6)+(x-12)/(x+9)-(x-24)/(x+5))
\#6=-1.37469E-05
>simplify polynomial((x-7)/(x+6)+(x-12)/(x+9)-(x-24)/(x+5))

```

```

Export result? (Yes -> 1 No -> 0)
0
>solver((1+Øi)x^3+(15.000001+\emptyseti)x^2+(150.999992+Øi) x^1+(620.999931+\emptyseti))
\#7=-6.48337

```

FFT and IFFT


ATC as Arithmetic Matrix Calculator

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

>matrix=7\8\9;6\7\9;2\4\8
matrix
\#O=
7+0i 8+0i 9+0i
6+0i 7+0i 9+0i
2+0i 4+\emptyseti 8+\emptyseti
>matrix^T
\#1=
7+0i 6+0i 2+0i
8+0i 7+0i 4+0i
9+0i 9+0i 8+0i
>matrix^2
\#2=
115+01 148+0i 207+0i
102+0i 133+0i 189+0i
54+0i 76 +0i 118+0i
>matrix*matrix
\#3=
115+0i 148+0i 207+0i
102+0i 133+0i 189+0i
54+0i 76+0i 118+0i
matrix-matrix
\#4=
a+ดi a+梠 a+梠
\partial+0i}\quad0+0i\quad0+0
0+0i 0+0i 0+0i
mmatrix*2
\#5=
14+0i 16+0i 18+0i
12+0i 14+0i 18+0i
4+0i 8+0i 16+0i

```

```

Export result? (Yes $\rightarrow 1$ \No \rightarrow)
Export result? (Yes $\rightarrow 1$ (No \rightarrow ($)$
$\# 7=0$
>matrix
3. $5+0 i \quad 4+0 i \quad 4.5+0 i$
$3+\emptyset i \quad 3.5+\emptyset i \quad 4.5+0 i$
$1+0 i \quad 2+0 i \quad 4+0 i$
Export result? (Yes -> 1 \No $->$)
\#8=0
>matrix=matrix*2
$7+\emptyset i \quad 8+\emptyset i \quad 9+\emptyset i$
$6+\emptyset i \quad 7+\emptyset i \quad 9+\emptyset i$
$2+\square i \quad 4+\square i \quad 8+\square i$
Export result? (Yes -> 1 \ No -> ©)
Export result? (Yes -> 1 \No $->$)
\#9=0
>matrix
$\begin{array}{lll}7+\emptyset i & 8+\emptyset i & 9+\emptyset i \\ 6+\emptyset i & 7+\emptyset i & 9+\emptyset i \\ 2+\emptyset i & 4+\emptyset i & 8+\emptyset i\end{array}$
Export result? (Yes -> 1 \ No -> Q)
$\# 10=0$
$>$

```
```

>newmatrix=7\8\9;4\5\6;8\9\7
\#1=80907
>matrix
$7+0 i \quad 8+0 i \quad 9+0 i$
$6+\emptyset i \quad 7+0 i \quad 9+0 i$
$2+\emptyset i \quad 4+\emptyset i \quad 8+\emptyset i$
Export result? (Yes -> 1 \No -> θ)
\square
\#2=0
$\geq \operatorname{det}\left(\right.$ newmatrix) $^{\text {(}}$
$7+0 i \quad 8+\emptyset i \quad 9+0 i$
$4+0 i \quad 5+0 i \quad 6+0 i$
$8 \div 0 i \quad 9 \div \theta i \quad 7 \div 0 i$
Export result? (Yes -> 1 \No \rightarrow)
0
\#3=-9
>det (matrix)
$7+0 i \quad 8+0 i \quad 9+0 i$
$6+0 i \quad 7+0 i \quad 9+0 i$
$2+\emptyset i \quad 4+\emptyset i \quad 8+\emptyset i$
Export result? (Yes $->1$ \No $->$)
\#4=-10
>matrix^R
$7+0 i \quad 8+0 i \quad 9+0 i$
$6+\emptyset i \quad 7+\emptyset i \quad 9+\emptyset i$
$2+\emptyset i \quad 4+0 i \quad 8+0 i$
Export result? (Yes $->1$ \No $->$)
\#5=3
>newmatrix^R
$7+0 i \quad 8+0 i \quad 9+0 i$
$4+0 i \quad 5+0 i \quad 6+0 i$
$8+\emptyset i \quad 9+\emptyset i \quad 7+\emptyset i$
Export result? (Yes -> 1 \ No -> 0)
\#6=3

```

```

114.57+0i -149.588+Øi 38.619+0i
-35.83+ดi 46.772+ดi}-12.061+ด
Export result? (Yes -> 1 \ No -> 0)
\#7=0
>matrix^_1*matrix^_1*matrix^_1
-82.97+0\overline{i}}108.348+0\mathrm{ - i -27.999+0i
114.57+0i -149.588+0i 38.619+0i
-35.83+0i 46.772+0i -12.061+0i
Export result? (Yes -> 1 \ No -> 0)
\#8=0
>matrix^1
-2+\emptyseti 2.
3+0i -3.8+0i Ø. 9+\emptyseti
-1+\emptyseti 1.2+\emptyseti -\emptyset.1+\emptyseti
Export result? (Yes -> 1 \ No -> 0)
\#9=0
>newsecondmatrix=matrix^_1
-2+0i 2.8+0i -0.9+0i
3+0i -3.8+0i 0.9+0i
-1+\emptyseti 1.2+\emptyseti -\emptyset.1+\emptyseti
Export result? (Yes -> 1 \ No -> 0)
0
Export result? (Yes -> 1 \ No -> Ø)
0
\#10=0
\newsecondmatrix^_1
7+0i 8+0i 9+0i
lll
Export result? (Yes -> 1 \ No -> 0)
\#11=0
>

```
```

matrixone=5\6;9\12
(matrixone^_1)^_1
\#7=
5.g0002+0i 6.g0002+0i
9.00004+0i 12+0i
>matrix^_2
\#8=
13.3+0i -17.32+0i 4.41+0i
-18.3+01 23.92+0i -6.21+0i
5.7+\emptyseti -7.48+Øi 1.99+Øi
>matrix^_1*matrix^_1
\#9=
13.3+0i -17.32+0i 4.41+0i
-18.3+0i_23.92+0i -6.21+0i
5.7+Øi -7.48+Øi 1.99+Øi
>(2*matrix)/matrix
\#10=2
mmatrix
\#11=
7+\emptyseti 8+Øi 9+\emptyseti
S+0i 7+0i 9+0i
2+\emptyset\i 4+\emptyseti

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

>sin(30)
\#=0.5
>matrix
\#1=
7+0i 8+0i 9+0i
9+0i 5+0i 4+0i
2+\emptyseti 3+Øi 4+\emptyseti
>matriz
\#2=
6+\emptyseti 7+\emptyseti 8+\emptyseti 9+\emptyseti 12+\emptyseti 4+\emptyseti 7+\emptyseti
7+\emptyseti 8+\emptyseti 9+\emptyseti Ø+\emptyseti 12+\emptyseti 1+\emptyseti 3+\emptyseti
3+\emptyseti 6+\emptyseti 7+\emptyseti 8+\emptyseti 2+\emptyseti 9+\emptyseti 12+\emptyseti
>tan(30)
\#3=0.57735
>see results
Result value
\#0=0.5
\#1=
7+Øi 8+Øi 9+Øi
9+Øi 5+Øi 4+Øi
2+\emptyseti 3+\emptyseti 4+\emptyseti
\#2=
7+\emptyseti 8+\emptyseti 9+\emptyseti Ø+\emptyseti 12+\emptyseti 1+\emptyseti 3+\emptyseti
3+\emptyseti 6+\emptyseti 7+\emptyseti 8+\emptyseti 2+\emptyseti 9+\emptyseti 12+\emptyseti
\#3=0.57735
>

```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator
```

Adva...
mmatrix
\#0=
5+0i 6+0i 7+0i
7+01 8+01 9+0i
2+0i 6+0i 12+0i
m}(0,0)
Real part:
In binary=101
In octal=5
In hexadecimal=5
m}(0,1)
Real part:
In binary=110
In octal=6
In hexadecimal=6
m}(0,2)
Real part:
In binary=111
In octal=7
In hexadecimal=7
m(1,0) =
Real part:
In binary=111
In octal=7
In hexadecimal=7
m(1, 1)=
Real part:
In binary=1000
In octal=10
In hexadecimal=8
m}(1,2)
Real part:
In binary=1001
In octal=11
In hexadecimal=9
m(2,0)=
Real part:
In binary=10
In octal=2
In hexadecimal=2
m}(2,1)
Real part:
In binary=110
In octal=6
In hexadecimal=6
m}(2,2)
Real part:
In binary=1100
In octal=14
<

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Higher precision to improve precision

Advanced Trigonometry Calculator v2.1.3 $==$) Processed in 0 s and 31 ms . ATC is ready to process more data. Latest ATC response was at 2022/08/22 22:46:02 (==

```
>123456789123456789
>higher precision
=> Configuration of higher precision to improve precision of calculations <==
Enable -> 1
Disable -> D
>123456789123456789
#1=1.23457E + 17
```

In this case this feature was enabled, and we disabled it.
Note that this feature when enabled is applied to almost all calculations performed with ATC.

Time features

Calendar

Check calendars.

This example shows the calendar that corresponds to the "current year". Note that you get the day, the month and the day of week highlighted.

Entering "calendar(2019)" you will get the calendar for 2019 but you will not get the day, the month and the day of week highlighted.

Stopwatch

Try measure the time you spend doing something.

```
>stopwatch(3)
Press "Enter" button to mark time.
t1=1s 727ms
t2=3s 720ms
t3=10m 20s 423ms
```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Your measure can go until days, e.g. "1d 5h 23m 34s 126ms".

Timer

Manage your time.
>timer<1:50:30)

In 1 hour, 50 minutes and 28 seconds, you would be notified that time has finished. The notification is a beep that is audible during 20 seconds.

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Big timer
Manage your time the big way.

```
run big timer(::3600)
```

[5: Advanced Trigonometry Calculator v1.9.4 ==) 2018/04/07 17:03:11 (==

Date adjustment

```
>day of week<d23+100 000m3+400y2015+500)
y2822m5d8=Sunday
>day of week<d8-100 000m5-400y2822-500)
y2015m3d23=Monday
```

" d ", " m " and " y " are flags, i.e. you don't need to respect the order of the example, all the combinations are possible: "dmy", "dym", "mdy", "myd", "ymd" and "ydm".

Clock

Use a clock.

>clock(1:0:0)

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

The example above shows a clock that will work during 1 hour.

Big clock

Use a big clock.

run big clock (: : 3600)

6.5. Advanced Trigonometry Calculator v1.9.4 ==) 2018/04/07 17:00:27 (== \times

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Time Difference Calculations

```
Advanced Trigonometry Calculator v2.0.7 ==) Processed in 0s and 16ms. ATC is ready to process more data. Latest ATC response was at 2019/12/18 21:41:35 (==
time difference calculations
Time difference between:
o present time and past time-> 1
o future time and present time->
Enter the older time data:
1582
Month? (1-12)
Day? (1-31)
Hour? (0-23, i.e. Please consider the 24-hour clock.)
Minute? (0-59)
Second? (0-59)
Enter the latter time data:
Year?
Month? (1-12)
Day? (1-31)
Hour? (0-23, i.e. Please consider the 24-hour clock.)
Minute? (0-59)
Second? (0-59)
Time difference: 437 years, 2 months, 3 days, Q hours, 0 minutes and Q seconds
Time difference: }5246\mathrm{ months, 3 days, Q hours, Q minutes and Q seconds
Time difference: 159675 days, Q hours, 0 minutes and Q seconds
Time difference: }3832200\mathrm{ hours, 0 minutes and 0 seconds
Time difference: 229932000 minutes and 0 seconds
Time difference: 13795920000 seconds
Time difference: }22810\mathrm{ weeks and 5 days, 0 hours, 0 minutes and 0 seconds
Time difference: 43746.57% of a common year ( }365\mathrm{ days)
```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Sorting

Ascending order

```
>ascending order(_4\_9\12\_1233\_67\123\_50000\1235465756\23\56\pi\e\_pi\e\_45356565676576)
-4.53566E+13,-50000,-1233,-67,-9,-4,-3.14159, 2.71828, 2.71828,3.14159, 12, 23,56,123,1.23547E+09
Export result? (Yes -> 1\ No -> 0)
0
```

Descending order

```
>descending order(_4\_9\12\_1233\_67\123\_50000\1235465756\23\56\pi\e\_pi\e\_45356565676576)
1.23547E+09, 123, 56, 23, 12, 3.14159, 2.71828, 2.71828, -3.14159, -4, -9, -67, -1233, -50000, -4.53566E+13
Export result? (Yes -> 1\No -> 0)
```

ASCII order

```
>ascii order
Seperate your expressions by "\" and in the final press "Enter"
Austria\Italy\Belgium\atvia\Bulgaria\ithuania\Croatia\Luxembourg\Cyprus \Malta\Czechia\Netherlands Denmark\ Poland\Estonia\Portugal\Finland\omania\France
\Slovakia\Germany\Slovenia\Grecce\Spain\Hungary\Sweden\Ireland
Austria
Mulgaria
Croatia
Cyprus
Czechia
Estonia
inland
rance
jermany
jreece
Hungary
taly
atvia
Lithuania
Luxembourg
Malta
Netherlands
Poland
poland
Oortugal
Romania
Slovakia
Slovenia
Spain
Sweden
Export result? (Yes -> 1\ No -> 0)
Continue?(Yes -> 1\ \No-> 0)
```

Advanced Trigonometry Calculator - The open-source advanced command-line calculator

Inverse ASCII order

```
inverse ascii order
Seperate your expressions by "\" and in the final press "Enter"
Austria\Italy\Belgium\atvia\Bulgaria\ithuania\Croatia\Luxembourg\Cyprus \Malta\Czechia\Netherlands \enmark\Poland Estonia\Portugal\Finland Romania\France
Slovakia\Germany\Slovenia\Greece\Spain\Hungary\Sweden\Ireland
Smeden
    lovenia
lovaki
omania
Portuga
etherlands
alta
uxtmbourg
Ithua
latvla
taly
leland
jreece
\mathrm{ reece}
ermance
inland
stonis
stonia
enmark
zechia
yprus
roatia
Bulgari
elgium
ustria
Export result? (Yes -> 1\ No -> 0)
Continue?(Yes -> 1\No-> 0)
```


Download and contact

Setup Advanced Trigonometry Calculator $\times 86$.exe - installation file.

Setup Advanced Trigonometry Calculator x64.exe - installation file.

Advanced Trigonometry Calculator.zip - portable file.

Advanced Trigonometry Calculator Wine Linux.zip - portable file.

Give your feedback contacting the developer!

Via Facebook application page we can talk about it. Give a "like" on the page! Click on the Facebook logo image below.

Email: renato freitas91@hotmail.com
Mobile phone: 00351967886392

Developer

Renato Alexandre dos Santos Freitas is portuguese. He has a degree in Electrotechnical and Telecommunications Engineering by Technology Higher School of Castelo Branco, part of Polytechnic Institute of Castelo Branco in Portugal.

Renato Freitas was born on July 6th, 1991 in Coimbra - Portugal and lived his growth, after his 3 years old in Castelo Branco, Portugal. To get an idea, he likes walking, cycling, swimming, programming, studying, socialize, watch documentaries of scientific and technological nature, discover new things, and he searches every time for more knowledge.

